1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GaryK [48]
3 years ago
15

A quarterback is set up to throw the football to a receiver who is running with a constant velocity v⃗ rv→rv_r_vec directly away

from the quarterback and is now a distance DDD away from the quarterback. The quarterback figures that the ball must be thrown at an angle θθtheta to the horizontal and he estimates that the receiver must catch the ball a time interval tctct_c after it is thrown to avoid having opposition players prevent the receiver from making the catch. In the following you may assume that the ball is thrown and caught at the same height above the level playing field. Assume that the y coordinate of the ball at the instant it is thrown or caught is y=0y=0 and that the horizontal position of the quarterback is x=0x=0.
Physics
1 answer:
Artist 52 [7]3 years ago
6 0

Answer:

a) V_o,y = 0.5*g*t_c

b) V_o,x = D/t_c - v_r

c) V_o = sqrt ( (D/t_c - v_r)^2 + (0.5*g*t_c)^2)

d)  Q = arctan ( g*t_c^2 / 2*(D - v_r*t_c) )

Explanation:

Given:

- The velocity of quarterback before the throw = v_r

- The initial distance of receiver = r

- The final distance of receiver = D

- The time taken to catch the throw = t_c

- x(0) = y(0) = 0

Find:

a) Find V_o,y, the vertical component of the velocity of the ball when the quarterback releases it.  Express V_o,y in terms of t_c and g.

b) Find V_o,x, the initial horizontal component of velocity of the ball.   Express your answer for V_o,x in terms of D, t_c, and v_r.

c) Find the speed V_o with which the quarterback must throw the ball.  

   Answer in terms of D, t_c, v_r, and g.

d) Assuming that the quarterback throws the ball with speed V_o, find the angle Q above the horizontal at which he should throw it.

Solution:

- The vertical component of velocity V_o,y can be calculated using second kinematics equation of motion:

                               y = y(0) + V_o,y*t_c - 0.5*g*t_c^2

                              0 = 0 + V_o,y*t_c - 0.5*g*t_c^2

                               V_o,y = 0.5*g*t_c

- The horizontal component of velocity V_o,x witch which velocity is thrown can be calculated using second kinematics equation of motion:

- We know that V_i, x = V_o,x + v_r. Hence,

                               x = x(0) + V_i,x*t_c

                               D = 0 + V_i,x*t_c

                               V_o,x + v_r = D/t_c

                                V_o,x = D/t_c - v_r

- The speed with which the ball was thrown can be evaluated by finding the resultant of V_o,x and V_o,y components of velocity as follows:

                           V_o = sqrt ( V_o,x^2 + V_o,y^2)

                          V_o = sqrt ( (D/t_c - v_r)^2 + (0.5*g*t_c)^2)

       

- The angle with which it should be thrown can be evaluated by trigonometric relation:

                            tan(Q) = ( V_o,y / V_o,x )

                            tan(Q) = ( (0.5*g*t_c)/ (D/t_c - v_r) )

                                   Q = arctan ( g*t_c^2 / 2*(D - v_r*t_c) )

                           

                               

You might be interested in
A car is rounding a 100-m-radius curve at 25 m/s.What is the minimum possible coefficient of static friction between the tires a
Crazy boy [7]

Answer:

The minimum possible coefficient of static friction between the tires and the ground is 0.64.

Explanation:

if the μ is the coefficient of static friction and R is radius of the curve and v is the speed of the car then, one thing we know is that along the curve, the frictional force, f will be equal to the centripedal force, Fc and this relation is :

Fc = f

m×(v^2)/(R) = μ×m×g

    (v^2)/(R) = g×μ

               μ = (v^2)/(R×g)

                  =  ((25)^2)/((100)×(9.8))

                  = 0.64

Therefore, the minimum possible coefficient of static friction between the tires and the ground is 0.64.

4 0
3 years ago
Which best describes the motion of air particles when a transverse wave passes through them?
malfutka [58]
Answer is c that is he particles move perpendicular to the direction of the wave.
8 0
4 years ago
A circuit is set up such that it has a current of 8 A. What would be the new current if the resistance was increased by a factor
RUDIKE [14]

Answer:

4 A

Explanation:

The relationship between current, voltage and resistance in a circuit is given by Ohm's law:

V=RI

where

V is the voltage

R is the resistance

I is the current

The equation can also be rewritten as

I=\frac{V}{R}

from which we see that the current is inversely proportional to the resistance, R.

In this problem, the initial current is I = 8 A. Then the resistance is doubled:

R ' = 2R

So the new current is

I'=\frac{V}{R'}=\frac{V}{2R}=\frac{1}{2}(\frac{V}{R})=\frac{I}{2}=4 A

so the current is halved.

7 0
3 years ago
NEED HELP TODAY
Free_Kalibri [48]

Answer:

I am pretty sure it is B My friend hope you are well

Explanation:

6 0
3 years ago
Read 2 more answers
Help! Will Mark Brainliest!
boyakko [2]

Answer:

D 5m/s

Explanation:

6 0
3 years ago
Other questions:
  • What are the 3 parts of an atom and give the electric charge of each
    13·1 answer
  • A portable music player, operating with four 1.5 V cells connected in series, provides a resistance of 15 000 Ω. What amount of
    10·1 answer
  • Which of the following is not an example of kinetic energy being converted to potential energy?
    10·2 answers
  • A car starts from 0 m along a road and accelerates at 0.5 m/s^2 to the right. A second car starts from 1000 m along the road and
    9·1 answer
  • 1. Point charges q 1 q 2 both of 22 nC are separated by a distance of 58 cm along a horizontal axis. Point a is located 40 cm fr
    7·1 answer
  • As motorists drive onto the acceleration lane, they must get up to the speed limit, _______, find a/an ________ and then _______
    10·1 answer
  • What is electric force ​
    8·1 answer
  • A positively charged glass rod is bought close to a suspended metal needle. What
    11·2 answers
  • What is the difference between potential difference and voltage​
    11·1 answer
  • a car advertisement States that a certain car can accelerate from rest to70km/h in 7seconds find the car's average acceleration​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!