They’re Eukaryotic/ the Eukarya kingdom
Hope this helps :)
Answer:
Explanation:
To solve this problem, we must understand the relationship between mass of a substance and the number of atoms.
Atoms are the smallest indivisible particles of any matter. A substance can be made up of several number of atoms in their space.
The mass of any substance is a function of the amount of atoms its contains.
The mass of a substance is related in chemistry to the amount of atoms its contains using the parameter called the number of moles.
A mole is the amount of substance that contains the Avogadro's number of particles. This number is 6.02 x 10²³ particles. The particles here can be protons, neutrons, electrons, atoms e.t.c.
Now,
Number of moles = 
Molar mass of copper = 63.6g/mole
Number of moles =
= 0.03mole
Since 1 mole of a substance contains 6.02 x 10²³atoms
0.03 mole of copper will contain 0.03 x 6.02 x 10²³atoms
= 1.89 x 10²² atoms
He needs to add 1.89 x 10²² atoms to make 2g of the sample.
By breaking the hydrogen bonds that cause surface tension
Answer:
if the oil is already 60 c and you heat up the hot plate to the same degree you are not changing anything
hope this helps :)
Answer:
An atom of Al which has 13 protons and 10 electrons is Al cation (Al⁺³)
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other.
For example,
Al atom has 13 protons and 13 electrons. The number of positive and negative charge is equal thus it will be neutral atom.
While the atom of Al which have 13 proton and 10 electron is not neutral. The positive charge is greater than negative by 3. Which means 3 electrons are lose by Al atom and form cation "Al⁺³".
Thus an atom of Al which has 13 protons and 10 electrons is Al cation (Al⁺³)