Answer:
The right solution is:
(a) 2.87 eV
(b) 1.4375 eV
Explanation:
Given:
Wavelength,
= 433 nm
Potential difference,
= 1.43 V
Now,
(a)
The energy of photon will be:
E = 
= 
or,
= 
= 
(b)
As we know,
⇒ 
By substituting the values, we get
⇒ 
⇒ 
or,
⇒ 
⇒ 
Answer:
h=2.86m
Explanation:
In order to give a quick response to this exercise we will use the equations of conservation of kinetic and potential energy, the equation is given by,

There is no kinetic energy in the initial state, nor potential energy in the end,

In the final kinetic energy, the energy contributed by the Inertia must be considered, as well,

The inertia of the bodies is given by the equation,



On the other hand the angular velocity is given by

Replacing these values in the equation,

Solving for h,

Explanation:
Activation energy and reaction rate
The activation energy of a chemical reaction is closely related to its rate. Specifically, the higher the activation energy, the slower the chemical reaction will be. ... The released energy helps other fuel molecules get over the energy barrier as well, leading to a chain reaction.
The layer of electrically charged molecules and atoms which spans 40-250 miles above ground called ionosphere causes the display of the aurora and the reflection of radio waves back to earth.
Average speed = (1/2) (beginning speed + ending speed)
= (1/2) ( 13 m/s + 30 m/s )
= (1/2) ( 43 m/s )
= 21.5 m/s