Yes I absolutely do! Seeing how NASA spent many years doing research to see if Mars was inhabitantable for life it has water! And scientists have theories that they're possibly could be a planet just like earth someone where put in the universe
Well it’s simple science not rocket science when an object falls. It’s gravitational potential turns into kinetic.
Answer:81.6%
Explanation:
Mass of CaCO3=4.010 g
Molar mass of CaCO3= 40+12+(16×3) = 100 g/mol.
Recall: number of moles(n)= mass÷ molar mass.
n=4.010÷100 = 0.0401 mol.
Molar mass of CaCl2 = 40+71= 111 g/mol.
Number of mol of CaCl2 = 5.455÷111= 0.04914 g/mol.
Mass of CaCl2 = 0.0401 × 111 = 4.4511 g of CaCl2.
Percent by mass of CaCl2 = (4.4511÷5.455) × 100
= 0.815967 ×100 = 81.5967%
Approximately; 81.6%.
Answer:
Amount of Ca(NO3)2 produced = 14.02 g
Explanation:
The given reaction can be depicted as follows:
Ca(OH)2 + 2HNO3 → Ca(NO3)2 + 2H2O
Since it is given that HNO3 is in excess, the limiting reactant is Ca(OH)2
Now, Mass of Ca(OH)2 = 6.33 g
Molar mass of Ca(OH)2 = 74 g/mol

Based on the reaction stoichiometry:
1 mole of Ca(OH)2 forms 1 mole of Ca(NO3)2
Therefore, moles of Ca(NO3)2 produced from the moles of Ca(OH)2 reacted = 0.0855 moles
Molar mass of Ca(NO3)2 = 164 g/mol

Answer:
2.39 moles
Explanation:
From the question given above, the following data were obtained:
Pressure (P) = 2.34 atm
Volume (V) = 25.6 L
Temperature (T) = 305 K
Number of mole (n) =?
NOTE: Gas constant (R) = 0.0821 atm.L/Kmol
The number of mole of CO₂ can be obtained by using the ideal gas equation as shown below:
PV = nRT
2.34 × 25.6 = n × 0.0821 × 305
59.904 = n × 25.0405
Divide both side by 25.0405
n = 59.904 / 25.0405
n = 2.39 moles
Thus, the number of mole of CO₂ is 2.39 moles.