<u>Answer:</u> The products of the given chemical equation are 
<u>Explanation:</u>
Protonation equation is defined as the equation in which protons get added in the substance.
The chemical equation for the protonation of carbonate ion in the presence of water follows:

By Stoichiometry of the reaction:
1 mole of carbonate ion reacts with 1 mole of water to produce 1 mole of hydrogen carbonate ion and 1 mole of hydroxide ion
Hence, the products of the given chemical equation are 
Answer:
Neutrons are all identical to each other, just as protons are. Atoms of a particular element must have the same number of protons but can have different numbers of neutrons.
Explanation:
Since the vast majority of an atom's mass is found its protons and neutrons, subtracting the number of protons (i.e. the atomic number) from the atomic mass will give you the calculated number of neutrons in the atom. In our example, this is: 14 (atomic mass) – 6 (number of protons) = 8 (number of neutrons).
Answer:
The strength of electric force depends on the amount of electric charge on the particles and the distance between them. Larger charges or shorter distances result in greater force.
Explanation:
Biphenyl will have a higher R value than the Methyl Orange.
Explanation:
Biphenyl is a aromatic hydrocarbon and it is a nonpolar molecule.
Methyl Orange is a organic compound with a -SO₃⁻Na⁺ polar functional group which will induce a high polarity in the compound.
You may find the chemical structures of both molecules in the attached picture.
Column chromatography, which use as stationary phase silica gel, is a good technique for separation of the Methyl Orange from Biphenyl.
Being a non-polar molecule, Biphenyl will have a higher R value than the Methyl Orange.
To separate them you use a appropriate solvent as eluent, as exemple chloroform, and Biphenyl will elute first from the column and after that, as a separate phase, Methyl Orange will elute thus separating them.
Learn more about:
chromatography
brainly.com/question/10296715
#learnwithBrainly