I would probably say transformation of virus like molecules
The reaction is not balanced
<h3>Further explanation</h3>
Given
Reaction
2Fe(s)+3O₂(g)⇒2Fe₂O₃(s)
Required
The number of atoms
Solution
In a balanced chemical equation, the number of atoms in the compound that reacts (the reactants and products) will have the same number
Reactants : Fe(s)+O₂(g)
Fe = 2 atoms
O = 3 x 2 = 6 atoms
Products : Fe₂O₃(s)
Fe = 2 x 2 = 4 atoms
O = 2 x 3 = 6 atoms
The reaction is not balanced because the number of Fe atoms is not the same
The balanced reaction should be:
4Fe(s)+3O₂(g)⇒2Fe₂O₃(s)
Answer:
14.048 moles I believe.
Explanation:
(8.46 * 10^24) / ( 6.022 * 10^23) = 14.048
Answer:
0.0303 Liters
Explanation:
Given:
Mass of the potassium hydrogen phosphate = 0.2352
Molarity of the HNO₃ Solution = 0.08892 M
Now,
From the reaction it can be observed that 1 mol of potassium hydrogen phosphate reacts with 2 mol of HNO₃
The number of moles of 0.2352 g of potassium hydrogen phosphate
= Mass / Molar mass
also,
Molar mass of potassium hydrogen phosphate
= 2 × (39.09) + 1 + 30.97 + 4 × 16 = 174.15 g / mol
Number of moles = 0.2352 / 174.15 = 0.00135 moles
thus,
The number of moles of HNO₃ required for 0.00135 moles
= 2 × 0.00135 mol of HNO₃
= 0.0027 mol of HNO₃
Now,
Molarity = Number of Moles / Volume
thus,
for 0.0027 mol of HNO₃, we have
0.08892 = 0.0027 / Volume
or
Volume = 0.0303 Liters