To solve the problem, it is necessary to apply the concepts related to the change of mass flow for both entry and exit.
The general formula is defined by

Where,
mass flow rate
Density
V = Velocity
Our values are divided by inlet(1) and outlet(2) by





PART A) Applying the flow equation we have to



PART B) For the exit area we need to arrange the equation in function of Area, that is



Therefore the Area at the end is 
Because of the position on the equator, the change in rotation of the Earth on its axis throughout the year doesn't affect it much. Unlike the poles, Quito is almost constantly in direct view of the sun. So, because of lack of change in rotation, the daylight hours are hardly varied as Quito is almost constantly in more or less the same spot in relation to the sun.
D) Scientific laws do not account for unseen variations, like wind
Explanation:
Will model in predicting the path of an arrow he was about to shoot failed because scientific laws most times do not account for unseen variations like wind.
Scientific laws are the description of an observed phenomenon in nature.
- Most scientific laws have exceptions.
- Exceptions in scientific laws are conditions in which the law will not hold true.
- There are exceptions to newton's law of motion which Will did not take into account.
learn more:
Newton's law brainly.com/question/11411375
#learnwithBrainly
Answer:

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Explanation:
In order to use the rule of thumb to find the speed of sound in meters per second, we need to use some conversion ratios. We know there is 1 mile per every 5 seconds after the lightning is seen. We also know that there are 5280ft in 1 mile and we also know that there are 0.3048m in 1ft. This is enough information to solve this problem. We set our conversion ratios like this:

notice how the ratios were written in such a way that the units got cancelled when calculating them. Notice that in one ratio the miles were on the numerator of the fraction while on the other they were on the denominator, which allows us to cancel them. The same happened with the feet.
The problem asks us to express the answer to one significant figure so the speed of sound rounds to 300m/s.
For the second part of the problem we need to use conversions again. This time we will write our ratios backwards and take into account that there are 1000m to 1 km, so we get:

This means that for every 3.11s there will be a distance of 1km from the place where the lightning stroke. Since this is a rule of thumb, we round to the nearest integer for the calculations to be made easily, so the rule goes like this:
The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Answer:
how is that a question?
Explanation:
yeah i dunno the answer cause thats not a question