1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kifflom [539]
3 years ago
13

Show that rigid body rotation near the Galactic center is consistent with a spherically symmetric mass distribution of constant

density.
Physics
1 answer:
irakobra [83]3 years ago
6 0

To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is

a_g = \frac{GM}{R^2}

Here

M = \text{Mass inside the Orbit of the star}

R = \text{Orbital radius}

G = \text{Universal Gravitational Constant}

Mass inside the orbit in terms of Volume and Density is

M =V \rho

Where,

V = Volume

\rho =Density

Now considering the volume of the star as a Sphere we have

V = \frac{4}{3} \pi R^3

Replacing at the previous equation we have,

M = (\frac{4}{3}\pi R^3)\rho

Now replacing the mass at the gravitational acceleration formula we have that

a_g = \frac{G}{R^2}(\frac{4}{3}\pi R^3)\rho

a_g = \frac{4}{3} G\pi R\rho

For a rotating star, the centripetal acceleration is caused by this gravitational acceleration.  So centripetal acceleration of the star is

a_c = \frac{4}{3} G\pi R\rho

At the same time the general expression for the centripetal acceleration is

a_c = \frac{\Theta^2}{R}

Where \Theta is the orbital velocity

Using this expression in the left hand side of the equation we have that

\frac{\Theta^2}{R} = \frac{4}{3}G\pi \rho R^2

\Theta = (\frac{4}{3}G\pi \rho R^2)^{1/2}

\Theta = (\frac{4}{3}G\pi \rho)^{1/2}R

Considering the constant values we have that

\Theta = \text{Constant} \times R

\Theta \propto R

As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.

So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density

You might be interested in
25. Explain why the speed of sound is faster in solids than in gases. Include two other factors Chapter 17 says the speed of sou
aksik [14]
In solids, particles or atom are very closely arranged compared to gasses. When these particles are arranged in such proximity, vibrations from sound are very easily transmitted from one particle to another in the solid. Hence, the sound vibrations can travel through the solid medium more quickly than through a gas medium.
Speed of sound also depends on its frequency and the wavelength.
7 0
3 years ago
A 67 kg soccer player uses 5100 kJ of energy during a 2.0 h match. What is the
Oksanka [162]

The  average power produced by the soccer player is  710 Watts.

Given the data in the question;

  • Mass of the soccer player; m = 67kg
  • Energy used by the soccer player; E = 5100KJ = 5100000J
  • Time; t = 2.0h = 7200s

Power; P =\ ?

Power is simply the amount of energy converted or transferred per unit time. It is expressed as:

Power = \frac{Energy\ converted }{time}

We substitute our given values into the equation

Power = \frac{5100000J}{7200s}\\\\Power = 708.33J/s \\\\Power = 710J/s \ \ \ \ \ [ 2\ Significant\ Figures]\\\\Power = 710W

Therefore, the  average power produced by the soccer player is  710 Watts.

Learn more: brainly.com/question/20953664

8 0
3 years ago
the length of time it takes a planet to revolve around the sun is equivalent to witch of the following?
Marina86 [1]
It really depends on how far or close the planet is from the sun

6 0
3 years ago
Read 2 more answers
What are the inner planets relative distance from the Sun
Inessa [10]
Closer than the outer planets, inside the Asteroid Belt between Mars and Jupiter.
5 0
3 years ago
Read 2 more answers
The law of reflection states that if the angle of incidence is 39 degrees, the angle of reflection is ___ degrees.
marishachu [46]
It's 39 degrees, too


good luck
8 0
3 years ago
Other questions:
  • How many wavelengths of a wave pass a point if the frequency of the wave is 4 hertz?
    5·1 answer
  • Which process can separate out the solute from the solvent?
    8·2 answers
  • An object has an acceleration of 6.0 m/s/s. If the net force was doubled and the mass was one-third the original value, then the
    15·1 answer
  • A d'Arsonal meter with an internal resistance of 1 kohm requires 10 mA to produce full-scale deflection. Calculate thew value of
    12·1 answer
  • Your're sailing a boat from spain west to florida. which winds would you use?
    8·1 answer
  • samantha a high school teacher wants to spend more time with her children and is looking for a job in her field. what would be a
    8·2 answers
  • What are not examples of velocity
    15·2 answers
  • A wave on a string is observed to have a frequency of 3 Hertz. Its wavelength is 6 centimeters.
    14·1 answer
  • Two spherical objects with a mass of 3.17 kg each are placed at a distance of 2.96 m apart. How many electrons need to leave eac
    14·1 answer
  • Gerard is measuring the speed of a remote-controlled airplane. He measures that the airplane travels 110 m in 5.4 seconds, givin
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!