What do we know that might help here ?
-- Temperature of a gas is actually the average kinetic energy of its molecules.
-- When something moves faster, its kinetic energy increases.
Knowing just these little factoids, we realize that as a gas gets hotter, the average speed of its molecules increases.
That's exactly what Graph #1 shows.
How about the other graphs ?
-- Graph #3 says that as the temperature goes up, the molecules' speed DEcreases. That can't be right.
-- Graph #4 says that as the temperature goes up, the molecules' speed doesn't change at all. That can't be right.
-- Graph #2 says that after the gas reaches some temperature and you heat it hotter than that, the speed of the molecules starts going DOWN. That can't be right.
--
Explanation:
(a)
Critical angle is the angle at the angle of refraction is 90°. After the critical angle, no refraction takes place.
Using Snell's law as:
Where,
is the angle of incidence
is the angle of refraction = 90°
is the refractive index of the refraction medium
is the refractive index of the incidence medium
Thus,
The formula for the calculation of critical angle is:
Where,
is the critical angle
(b)
No it cannot occur. It only occur when the light ray bends away from the normal which means that when it travels from denser to rarer medium.
Im pretty sure its the first option
Voltage = (current) x (resistance)
= (19 A) x (14 ohms) = 266 volts .
Note: Be careful using that thing !
It's dissipating
I² R = (19 A)² x (14 ohms) = 5,054 watts ! ! !
That's an awful lot of power for a blow-dryer !
The dryer is certainly not using very much of that power to run the fan.
Most of it is being used to heat air. 5 kilowatts is more power than most
toasters or microwave ovens use, so please be careful with how much of
your hair or skin you expose to that hot-air blast. You could probably cook
a meatloaf with it.