Use the equation:
v = u + at
because it has all the variables given and need to find. First you must make sure units are the same. Acceleration is given in m/s^2. Check to make sure this is correct before using the following solution. Convert acceleration from meters per second squared to miles per hour squared.
look up conversion meters to miles
1 mile = 1609.34 meters
10.60 m/s^2 * 1mile/1609.34m = 0.0069 mi/s^2
there are 3600 seconds in an hour, then there are 3600s*3600s in 1 hr^2
0.0069 mi/s^2 * 3600s*3600s/hr^2 = 85362 mi/hr^2
Then using: v = u +at
60 = 55 + 85362t
60 - 55 = 85362t
5 = 85362t
5/85362 = t
5.9 x 10^-5 hr = t
very small value in hours, multiply by 3600 to convert to seconds.
5.9 x 10^-5 hr * 3600s/hr = 0.21 seconds
Answer:
0.23348 A
Explanation:
B = Magnetic field
v = Velocity of electron = 
q = Charge of electron = 
= Vacuum permeability = 
r = Radius of circle = 0.026 m
N = Number of turns = 103 turns/cm = 
I = Current
The magnetic and centripetal force will be balanced

The magnetic field in solenoid is given by

From the first equation

The current in the solenoid is 0.23348 A
Answer:
A change of one degree Celsius = a change of one Kelvin, but a Celsius temperature is never equal to a Kelvin temperature. A change of 1 degree Fahrenheit equals a change of 5/9 = 0.56 degrees Celsius. To convert a Fahrenheit temperature to Celsius, subtract 32 and multiply by 5/9.
Explanation:
If it were possible to move a star towards the earth then its apparent magnitude number would decrease while its absolute magnitude number would stay the same.
Definition of apparent magnitude:
The luminosity of a celestial body (such as a star) as observed from the earth compare absolute magnitude.
So for example, the apparent magnitude of the Sun is -26.7 and is the brightest celestial object we can see from Earth. However, if the Sun were 10 parsecs away, its apparent magnitude would be +4.7, only about as bright as Ganymede appears to us on Earth.
Definition of absolute magnitude:
Absolute magnitude is a measure of the luminosity of a celestial object on an inverse logarithmic astronomical magnitude scale.
To learn more about apparent magnitude here
brainly.com/question/2949443
#SPJ4
First, illustrate the problem as shown in the attached picture. Next, let's find the distance traveled by planes A and B after 2.9 h.
Distance of A: 650 m/h * 2.9 h = 1,885 m
Distance of B: 560 m/h * 2.9 h = 1,624 m
Then, we use the cosine law to determine the distance x. The angle should be: 85 - 60.5 = 24.5°
x² = 1,885² + 1,624² - 2(1,885)(1,624)(cos 24.5°)
x = √619381.3183
<em>x = 787 m</em>