Missing question:
1) the rate of dissolving reaches zero
<span>2) the rate of crystallization reaches zero </span>
3) the rate of dissolving is zero and the rate of crystallization is greater than zero.
<span>4) both the rate of dissolving and the rate of crystallization are equal and greater than zero.
</span>
Answer is: 4) both the rate of dissolving and the rate of crystallization are equal and greater than zero.
Silver chloride (AgCl) dissolves and form silver and chlorine ions, in the same time silver and chlorine ions crystallizate and form solid salt silver chloride.
In equilibrium rates of dissolvinf and crysallization and concentration of ions do not change.
Answer:
0.4444 g/cm³ ≅ 0.44 g/cm³ (2 significant figures).
Explanation:
<em>d = m/V,</em>
where, d is the density of the material (g/cm³).
m is the mass of the material (m = 28 g).
V is the volume of the material (V = 63.0 cm³).
<em>∴ d = m/V </em>= (28 g)/(63.0 cm³) = <em>0.4444 g/cm³ ≅ 0.44 g/cm³ (2 significant figures).</em>
Answer:
Density, d = 1.779 g/cm³
Explanation:
The density of a material is given by its mass per unit volume.
Here, height of a piece of magnesium cylinder, h = 5.62 cm
Its diameter, d = 1.34 cm
Radius = 0.67 cm
Volume of he cylinder,


So, the density of the sample is 1.779 g/cm³.
The answer is option C.
That is it is a heterogeneous mixture.
Heterogeneous mixture have the following properties:
1. Different components could be observed in the substance.
2. Different samples of the substance appeared to have different proportions of the components.
3.The components could be easily separated using filters and sorting.
Answer:
B. Particles of matter have spaces between them.
Explanation:
The particle nature model of matter is an model used to explain the properties and nature of matter. The statements of the particle nature model of matter are as follows :
1. Matter is made of small particles of atoms or molecules.
2. The particles of matter have space between them. The spaces between the particles are least in solids as they are closely packed together but are greatest in gases whose particles are far apart from each other.
3. The particles of matter are in constant motion at all times. Solids particles are not free to move due to strong molecular forces between the particles, but are constantly vibrating in their mean positions. Liquid particles free to move due to lesser molecular forces while gas molecules which have negligible intermolecular forces have the greatest ability to move.
4. The particles of matter are attracted to each other by intermolecular forces. These forces are greatest in solids and least in gases.
The correct option is B.