Answer:
1.25 mol LiF
Explanation:
5.00 M solution means
5.00 mol LiF in 1 L solution=1000mL
x mol LiF in 250 mL
x = 5.00*250/1000 = 1.25 mol LiF
Answer is: c. 1.204 × 10²⁴ atoms
of carbon.
n(C) = 2 mol; amount of substance of carbon.
Na = 6.02·10²³ 1/mol; Avogadro constant (the number of constituent particles, in this example atoms, that are contained in the amount of substance given by one mole).
N(C) = n(C) · Na.
N(C) = 2 mol · 6.02·10²³ 1/mol.
N(C) = 12.04·10²³ = 1.204·10²⁴; number of carbon atoms in a sample.
Answer: A. The extra electrons start to fill higher sublevels in the energy level.
Explanation:
Answer:
The balanced equation for the dissociation of KI is
KI → K⁺ + I⁻
Explanation:
KI is the potassium iodide.
K⁺ comes from the KOH, a strong base, so the cation is the conjugate weak acid and in water it does not react.
I⁻ comes from HI, a strong acid, so the anion is the conjugate weak base and in water it does not react.
K⁻ + H₂O ← KOH + H⁺
I⁻ + H₂O ← HI + OH⁻
That's why the arrow in the reaction is in the opposite direction.
Answer: Ions may be defined as the element that contains either positive or negative charge over them. Two types of ions are cations and anions. The outermost electrons are involved in the formation of ions.
The atomic number of sulfur is 16. Its outermost electronic configuration is K=2, L= 8, M= 6. The sulfur requres two more electrons to complete its orbit and accquire -2 charge.
Explanation: