Answer: a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2
Explanation:
Acceleration is the rate of change in the velocity per time
a = change in velocity/time
a = ∆v/t
average acceleration a = (v2 -v1)/t. ....1
Given;
Final velocity v2 = 1.63m/s
Initial velocity v1 = -1.15ms
time taken t = 2.11s
Substituting into eqn 1
a = [1.63 - (-1.15)]/2.11
a = (1.63+1.15)/2.11
a = 2.78/2.11
a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2
I'm not sure what you were trying to put here
Answer:
0-4 acceleration comes at 12 m/s where (B) stagnates at 12 m/s and remains for 4 seconds (C) is breaks being activated slowing the car to 6 m/s in 2 seconds and (D) over the course of 4 seconds brings the car to 10 m/s.
Explanation:
Answer:
0.012-m
Explanation:
∆L = α × Lo × (T-To)
α is the coefficient of linear expansion = 12 × 10-6 K-1
Lo = Initial length = 25-m
∆L = Change in length
(T-To) = 40 K
∆L = 12 × 10-6 × 25 × 40
∆L = 0.012-m
Answer:
560 m/s
Explanation:
Given,
Frequency ( f ) = 80 hz
Wavelength ( λ ) = 7.0 m = 7m
To find : Velocity ( v )
Formula : -
v = f λ
v = 80 x 7
v = 560 m/s
Hence, the velocity of the wave is 560 m/s.