The interaction between two like-charged objects is repulsive. ... Positively charged objects and neutral objects attract each other; and negatively charged objects and neutral objects attract each other.
Answer:
Explanation:
q = 2e = 3.2 x 10^-19 C
mass, m = 6.68 x 10^-27 kg
Kinetic energy, K = 22 MeV
Current, i = 0.27 micro Ampere = 0.27 x 10^-6 A
(a) time, t = 2.8 s
Let N be the alpha particles strike the surface.
N x 2e = q
N x 3.2 x 10^-19 = i t
N x 3.2 x 10^-19 = 0.27 x 10^-6 x 2.8
N = 2.36 x 10^12
(b) Length, L = 16 cm = 0.16 m
Let N be the alpha particles
K = 0.5 x mv²
22 x 1.6 x 10^-13 = 0.5 x 6.68 x 10^-27 x v²
v² = 1.054 x 10^15
v = 3.25 x 10^7 m/s
So, N x 2e = i x t
N x 2e = i x L / v
N x 3.2 x 10^-19 = 2.7 x 10^-7 x 0.16 / (3.25 x 10^7)
N = 4153.85
(c) Us ethe conservation of energy
Kinetic energy = Potential energy
K = q x V
22 x 1.6 x 10^-13 = 2 x 1.5 x 10^-19 x V
V = 1.17 x 10^7 V
Answer:No, it doesn't move easily downward because it will try to resist the movement ,due to a resistance force of inertia that it possess at rest.
Explanation:when an object has higher or larger mass it tends to resist any motion given to it unlike the one with lower mass.
The larger the mass the more resistance force an object has.
3 is the answer to your question
Answer:

Explanation:
We know that when we don't have air friction on a free fall the mechanical energy (I will symbololize it with ME) is equal everywhere. So we have:

where me(1) is mechanical energy while on h=10m
and me(2) is mechanical energy while on the ground
Ek(1) + DynamicE(1) = Ek(2) + DynamicE(2)
Ek(1) is equal to zero since an object that has reached its max height has a speed equal to zero.
DynamicE(2) is equal to zero since it's touching the ground
Using that info we have

we divide both sides of the equation with mass to make the math easier.
