Answer:
This question is incomplete
Explanation:
This question is incomplete.
However, when all the required data are available, you can use the formula/steps below
Average speed/velocity (m/s) = distance (in metres) ÷ time (in seconds)
Time (in secs) = distance ÷ average speed/velocity
Kindly note that "blocks" is not a standard unit for distance measurement in science, hence the distance (since its a walking distance) must be in metres (or converted to metres if not in metres).
The distance in the formula is the distance from the hotel to the ice cream shop while the average speed is the distance covered per time as s/he walks to the ice cream shop and back. Hence, the answer gotten from the formula above will have to be multiplied by 2 (in order to get the time taken to walk to the ice cream shop and back) because the formula will only provide answer to one trip (time taken to walk to the shop).
After the multiplication mentioned above, the time in seconds should be converted to minutes by dividing the answer in seconds by 60
Answer:
Q = -18118.5KJ
W = -18118.5KJ
∆U = 0
∆H = 0
∆S = -60.80KJ/KgK
Explanation:
W = RTln(P1/P2)
P1 = 1bar = 100KN/m^2, P2 = 1500bar = 1500×100 = 150000KN/m^2, T = 23°C = 23 + 273K = 298K
W = 8.314×298ln(100/150000) = 8.314×298×-7.313 = -18118.5KJ ( work is negative because the isothermal process involves compression)
∆U = Cv(T2 - T1)
For an isothermal process, temperature is constant, so T2 = T1
∆U = Cv(T1 - T1) = Cv × 0 = 0
Q = ∆U + W = 0 + (-18118.5) = 0 - 18118.5 = -18118.5KJ
∆H = Cp(T2 - T1)
T2 = T1
∆H = Cp(T1 - T1) = Cp × 0 = 0
∆S = Q/T
Mass of water = 1kg
Heat transferred (Q) per kilogram of water = -18118.5KJ/Kg
∆S = (-18118.5KJ/Kg)/298K = -60.80KJ/KgK
There are 680,000 microliters in 0.68 liters.
The third answer is the one you want. You have to have an adjustable density. All other things being equal, if the tanks you use for holding just water when filled with water will let the sub sink, because the sub is made of a dense metal like iron or steel.
If on the other hand you fill these tanks with air, the net density will be below one and the sub will rise.
Answer:i really know it is 29.09
Explanation: