Explanation:
The velocity of sound depends on the density of the medium. So we need to find the density of air at each set of conditions. The density of air is:
ρ = (Pd / (Rd T)) + (Pv / (Rv T))
where Pd and Pv are the partial pressures of dry air and water vapor,
Rd and Rv are the specific gas constants of dry air and water vapor,
and T is the absolute temperature.
At the first condition:
Pv = 31.7 mmHg = 4226.3 Pa
Pd = 650 mmHg - 31.7 mmHg = 618.3 mmHg = 82433 Pa
Rv = 461.52 J/kg/K
Rd = 287.00 J/kg/K
T = 30°C = 303.15°C
ρ = (82433 / 287.00 / 303.15) + (4226.3 / 461.52 / 303.15)
ρ = 0.94746 + 0.03021
ρ = 0.97767 kg/m³
At the second condition:
Pv = 0 Pa
Pd = 650 mmHg = 86660 Pa
Rv = 461.52 J/kg/K
Rd = 287.00 J/kg/K
T = 0°C = 273.15°C
ρ = (86660 / 287.00 / 273.15) + (0 / 461.52 / 273.15)
ρ = 1.1054 + 0
ρ = 1.1054 kg/m³
The square of the velocity of sound is proportional to the ratio between pressure and density:
v² = k P / ρ
Since the atmospheric pressure is constant, we can say it's proportional to just the density:
v² = k / ρ
Using the first condition to find the coefficient:
(340)² = k / 0.97767
k = 113018.652
Now finding the velocity of sound at the second condition:
v² = 113018.652 / 1.1054
v = 319.75
Answer:
The incoming white light is composed of light of different colors,
Since these different colors have different refractive indices they are refracted at different angles from one another.
The output light is then separated by color creating a color spectrum.
Since n is greater for shorter wavelengths (violet colors) these wavelengths are refracted thru the larger angles.
Explanation:
Contact force is any force that requires contact. An object that exerts a force on another object by touching it is exerting a contact force. Examples of contact force are friction and normal force.
Examples of a non-contact force are gravity and magnetism.
Velocity stands for Displacement w.r.t time

Or

Answer:
The current drawn by Horace’s reading glasses is 0.8 A.
Explanation:
Given that,
Resistance of each bulb, R = 2 ohms
Voltage of the system, V = 3.2 volts
These two bulbs are connected in series. The equivalent resistance will be 2 ohms +2 ohms = 4 ohms
Let I is the current drawn by Horace’s reading glasses. Using Ohm's law to find it such that :

So, the current drawn by Horace’s reading glasses is 0.8 A.