1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga55 [171]
3 years ago
10

A 70.0 kg man jumping from a window lands in an elevated fire rescue net 11.0 m below the window. He momentarily stops when he h

as stretched the net by 1.50 m. Assuming that mechanical energy is conserved during this process and that the net functions like an ideal spring, find the elastic potential energy of the net when it is stretched by 1.50 m. (10 pts)
Physics
1 answer:
levacccp [35]3 years ago
6 0

Answer:

70.15 Joule

Explanation:

mass of man, m = 70 kg

intial length, l = 11 m

extension, Δl = 1.5 m

Let K is the spring constant.

In the equilibrium position

mg = K l

70 x 9.8 = K x 11

K = 62.36 N/m

Potential energy stored, U = 0.5 x K x Δl²

U = 0.5 x 62.36 x 1.5 x 1.5

U = 70.15 Joule

You might be interested in
What is the relationship between the density of a substance and the speed of sound through that substance?
xxMikexx [17]

Answer:The greater the density of a medium, the slower the speed of sound. This observation is analogous to the fact that the frequency of a simple harmonic motion is inversely proportional to m, the mass of the oscillating object. The speed of sound in air is low, because air is easily compressible.

Explanation:

8 0
2 years ago
A rock is thrown from the top of a 20-m building at an angle of 53° above the horizontal. If the horizontal range of the throw
NemiM [27]

Answer:

28.5 m/s

18.22 m/s

Explanation:

h = 20 m, R = 20 m, theta = 53 degree

Let the speed of throwing is u and the speed with which it strikes the ground is v.

Horizontal distance, R = horizontal velocity x time

Let t be the time taken

20 = u Cos 53 x t

u t = 20/0.6 = 33.33 ..... (1)

Now use second equation of motion in vertical direction

h = u Sin 53 t - 1/2 g t^2

20 = 33.33 x 0.8 - 4.9 t^2     (ut = 33.33 from equation 1)

t = 1.17 s

Put in equation (1)

u = 33.33 / 1.17 = 28.5 m/s

Let v be the velocity just before striking the ground

vx = u Cos 53 = 28.5 x 0.6 = 17.15 m/s

vy = uSin 53 - 9.8 x 1.17

vy = 28.5 x 0.8 - 16.66

vy = 6.14 m/s

v^2 = vx^2 + vy^2 = 17.15^2 + 6.14^2

v = 18.22 m/s

6 0
3 years ago
A long line of charge with uniform linear charge density λ1 is located on the x-axis and another long line of charge with unifor
Dahasolnce [82]

Answer:

A.The positive z-direction

Explanation:

We are given that

Linear charge density of long line which is  located on the x-axis=\lambda_1

Linear charge density of another long line which is  located on the y-axis=\lambda_2

We have to find the direction of electric field at z=a on the positive z-axis if \lambda_1 and \lambda_2 are positive.

The direction of electric field  at z=a on the positive z-axis  is positive z-direction .

Because \lambda_1 and \lambda_2 are positive and the electric field is  applied away from the positive charge.

Hence, option A is true.

A.The positive z-direction

6 0
3 years ago
Is velocity a scalar or a vector
gizmo_the_mogwai [7]
Velocity<span> is a</span>vector<span> quantity; it is direction-aware.</span>
5 0
3 years ago
Read 2 more answers
Prove the three laws of motion​
Vaselesa [24]

Answer:

The first law, also called the law of inertia, was pioneered by Galileo. This was quite a conceptual leap because it was not possible in Galileo's time to observe a moving object without at least some frictional forces dragging against the motion. In fact, for over a thousand years before Galileo, educated individuals believed Aristotle's formulation that, wherever there is motion, there is an external force producing that motion.

The second law, $ f(t)=m\,a(t)$ , actually implies the first law, since when $ f(t)=0$ (no applied force), the acceleration $ a(t)$ is zero, implying a constant velocity $ v(t)$ . (The velocity is simply the integral with respect to time of $ a(t)={\dot v}(t)$ .)

Newton's third law implies conservation of momentum [138]. It can also be seen as following from the second law: When one object ``pushes'' a second object at some (massless) point of contact using an applied force, there must be an equal and opposite force from the second object that cancels the applied force. Otherwise, there would be a nonzero net force on a massless point which, by the second law, would accelerate the point of contact by an infinite amount.

Explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • What is the strength of the electric field of a point charge of magnitude +4.8 × 10^-19 C at a distance of 4.0 × 10^-3 m? A. 3.6
    15·1 answer
  • What are balanced forces?
    15·2 answers
  • What properties of Pluto might make scientists think that it is a Kuiper Belt Object?
    9·1 answer
  • 1. Which of the following is the broadest, most inclusive taxonomic group? genus species family domain 2. The species name of th
    9·1 answer
  • The pressure inside a champagne bottle can be quite high and can launch a cork explosively. Suppose you open a bottle at sea lev
    15·1 answer
  • Which statement best describes the magnetic properties of a material?
    14·1 answer
  • Your boat runs aground at high speed. What should you do FIRST?
    11·1 answer
  • What happens when ice melts, according to the kinetic theory?
    11·1 answer
  • What is the area of space around a magnet called?
    5·1 answer
  • Directions: Consider a 2-kg
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!