Answer:The speed of a wave is dependant on four factors: wavelength, frequency, medium, and temperature.
Explanation:
Answer:
∆H = negative and ∆S = positive.
Explanation:
The reaction given in the question is spontaneous at room temperature ,
hence ,
The the gibbs free energy , i.e. ,∆G will be negative for spontaneous reaction
According to the formula ,
∆G = ∆H -T∆S
The value of ∆G can be negative , if ∆H has a negative value and ∆S has a positive value , because , T∆S , has a negative sign .
Hence , the answer will be , ∆H = negative and ∆S = positive.
The Ancient Egyptians used simple sundials and divided days into smaller parts, and it has been suggested that as early as 1,500BC, they divided the interval between sunrise and sunset into 12 parts. ... Known as a clepsydra, it uses a flow of water to measure time.
The chemical compound's empirical formula is NS.
The chemical compound's molecular formula is N4S4.
<h3>What does a chemical empirical formula look like?</h3>
- The empirical formula of a compound that gives the proportion (ratios) of the elements in the complex but not the precise number or arrangement of atoms is known as an empirical formula.
- This would be the compound's element to whole number ratio with the lowest value.
<h3>What sort of empirical formula would that be?</h3>
- The chemical structure of glucose is C6H12O6. Every mole of carbon and oxygen is accompanied by two moles of hydrogen.
- Glucose has the empirical formula CH2O.
- Ribose has the chemical formula C5H10O5, which can be simplified to the empirical formula CH2O.
learn more about empirical formula here
brainly.com/question/1603500
#SPJ4
the question you are looking for is
A compound containing only sulfur and nitrogen is 69.6% S by mass; the molar mass is 184 g/mol. What are the empirical and molecular formulas of the compound?
Answer: Option (b) is the correct answer.
Explanation:
When there are more number of hydroxide ions in a solution then there will be high concentration of
or hydroxide ions. As a result, more will be the strength of base in that particular solution.
A base is strong when it readily dissociate into its ions in the solution. When a base is strong, then it does not matter at what concentration it is dissolved in the solution because despite of its low concentration it will remain a strong base.
Thus, we can conclude that out of the given options, the statement even at low concentrations, a strong base is strong best relates the strength and concentration of a base.