So acceleration = (final velocity - initial velocity)/time
So (fv-iv)/t=a
(45-110)/4.5
Gives you (-130/9)km/h^2
You may have to convert the SI units so just follow my steps and change what must be changed
Answer:
A) receding from the earth
B) 
Explanation:
- A) receding from the earth
The wavelength went from 434.1nm to 438.6nm, there was an increase in wavelength (also knowecn as redshift due to the doppler efft), this increase is due to the fact that the source that emits the radiation (the distant galaxy) is moving away and therefore the light waves it emits are "stretched", causing us to see a wavelength greater than the original.
- B)

to calculate the relative speed we use the following formula:

where
is the speed of light:
is the wavelength emited by the source, and
is the wavelength measured on earth.
we substitute all the values and do the calculations:

the relative speed is: 
Increasing the separation distance between objects decreases the force of attraction or repulsion between the objects. And decreasing the separation distance between objects increases the force of attraction or repulsion between the objects. Electrical forces are extremely sensitive to distance.
Answer:
0.52°
Explanation:
refractive index for blue light, nb = 1.640
Refractive index for red light, nr = 1.595
Angle of incidence, i = 30°
Let the angle of refraction for blue light is rb and the angle of refraction for red light is rR.
By use of Snell's law for blue light




By use of Snell's law for red light




The angle between the two beams, 
θ = 18.27° - 17.75°
θ = 0.52°
Well, the figure seems to report that velocity is measured in m/s²... That label should say m/s. (Unless of course this is the graph of acceleration over time, but then the answer would probably be more complicated than the given choices.)
If the graph indeed shows velocity, and the unit is just a typo, then the displacement from A to D is equal to the area under the curve.
From A to B, the area is of a triangle with height 4 m/s and base 1 s, hence the area is 1/2 • (4 m/s) • (1 s) = 2 m.
From B to C, it's a rectangle with length 3 s and height 4 m/s, hence with area (3 s) • (4 m/s) = 12 m.
From C to D, it's a trapezoid with "height" 2 s and bases 4 m/s and 2 m/s, hence with area 1/2 • (4 m/s + 2 m/s) • (2 s) = 6 m.
The total displacement is then 2 m + 12 m + 6m = 20 m.