I think it's asking for area of rectangle.
Area of rectangle = length • width
Solution:
1) Rewrite it in the form {a}^{2}-2ab+{b}^{2}, where a={d}^{2} and b=4
{({d}^{2})}^{2}-2({d}^{2})(4)+{4}^{2}
2) Use Square of Difference: {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}
{({d}^{2}-4)}^{2}
3) Rewrite {d}^{2}-4 in the form {a}^{2}-{b}^{2} , where a=d and b=2
{({d}^{2}-{2}^{2})}^{2}
4) Use Difference of Squares: {a}^{2}-{b}^{2}=(a+b)(a-b)
{((d+2)(d-2))}^{2}
5) Use Multiplication Distributive Property: {(xy)}^{a}={x}^{a}{y}^{a}
{(d+2)}^{2}{(d-2)}^{2}
Done!
Answer:
B -⅓
Step-by-step explanation:
sinx = -3/5
Adjacent² = 5² - 3² = 16
Adjacent = 4
tan(x) = -3/4
-¾ = 2tan(½x)/[1 - tan²(½x)]
-3 + 3tan²(½x) = 8tan(½x)
3tan²(½x) - 8tan(½x) - 3 = 0
tan(½x) = 3, -⅓
Answer:
The answer is (2,1)
Step-by-step explanation:
Answer:
I believe the value would be 9.