The reaction is
CaC₂(s) + 2H₂O (l) -----> Ca(OH)₂ (s) + C₂H₂ (g)
As we have data of gas ethyne (or acetylene), C₂H₂
We can calculate the moles of acetylene and from this we can estimate the mass of calcium carbide taken
the moles of acetylene will be calculated using ideal gas equation
PV =nRT
R = gas constant = 0.0821 Latm/molK
T = 385 K
V = volume = 550 L
P = Pressure = 1.25 atm
n = moles = ?
n = PV /RT = 1.25 X 550 / 0.0821 X 385 = 21.75 mol
As per balanced equation these moles of acetylene will be obtained from same moles of calcium carbide
moles of calcium carbide = 21.75mol
molar mass of CaC₂ = 40 + 24 = 64
mass of CaC₂ = moles X molar mass = 21.75 X 64 = 1392g
Answer:
60%
Explanation:
M(NH4NO3) = 2*14 +4*1 +3*16 = 80 g/mol
M(3O) = 3*16 = 48 g/mol
(48/80) *100 % =60% oxygen by mass.
No - a precipitation will occur though. Potassium nitrate is soluble in water, so the potassium and nitrate ions will remain spectator ions and stay in solution. Lead (II) hydroxide is not soluble, and will precipitate out of solution to form a solid product.
The size of most eukaryotic animal cells range from 1 - 30 micrometers while the size of, let's say coccus bacteria is between 0.5 - 1.0 micrometers. So, if the largest animal cell is filled with the largest coccus bacteria, we can say that 30 bacteria can fit inside.