Physical: ripping paper, braking a stick, cake batter mixing
Chemical: burning paper, spoiled milk, a penny turning green
Answer:
<h2>0.73 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>0.73 g/cm³</h3>
Hope this helps you
Explanation:
1. The three factors are;
- Increasing the surface area of the reactants
- Using a catalyst
- Increasing temperature
2. Raising the temperature of a reaction mixture is the same as increasing the kinetic energy of the reacting molecules.
3. This reaction is an exothermic reaction. In exothermic reaction, the temperature of the system (mixture) decreases while that of the surroundings increases.
4. Reactions that releases energy to the surroundings are exothermic reactions.
5. All the options is an example of exothermic process because heat is being removed from the system except;
B. Evaporation of water - This is because it must absorb heat from the surroundings making it endothermic.
Explanation:
Using Beer-Lambert's law :
Formula used :

where,
A = absorbance of solution
c = concentration of solution
l = length of the cell
= molar absorptivity of this solution
According to question:
A = (C) : absorbance measured by the spectrometer
c = (B) : concentration, in mol/L, of the stock solution from which the sample was made
l = (A): pathlength of light through the cell
ε = (D) : molar absorptivity, a constant unique to that substance at that wavelength
The correct answer is D
Explanation:
Wave frequency is mainly determined by the number of waves that pass through a specific point. In a diagram, this can be found by analyzing the number of crests (top of the wave) and the space between them. For example, wave B is the one with the lowest frequency because there is only one crest and this shows only one wave passing at a specific point. On the opposite, wave D is the one with the highest frequency because this shows multiple crests and this indicates the frequency is high or that many waves pass through a specific point in a short time.