(a) Let
be the maximum linear speed with which the ball can move in a circle without breaking the cord. Its centripetal/radial acceleration has magnitude

where
is the radius of the circle.
The tension in the cord is what makes the ball move in its plane. By Newton's second law, the maximum net force on it is

so that

Solve for
:

(b) The net force equation in part (a) leads us to the relation

so that
is directly proportional to the square root of
. As the radius
increases, the maximum linear speed
will also increase, so the cord is less likely to break if we keep up the same speed.
Answer:

Explanation:
The textbooks say that the maximum range for projectile motion (with no air resistance) is 45 degrees.
Answer: False
Explanation:
Winds are named for the cardinal direction they blow from. Hence, a wind that <em>"blows towards the east"</em>, logically should <u>come from the west </u>and is called a <em>"west wind"</em>.
In thise sense, one of the best examples of this type of wind are the <em>Westerlies</em>, which are are prevailing winds that blow from the west at midlatitudes and have the characteristic that are stronger during winter and weaker during summer.
Therefore, the statement is false.
Answer:
a
Explanation:
I think its a its speed increases.....
Answer:

Explanation:
It is given that,
A planar electromagnetic wave is propagating in the +x direction.The electric field at a certain point is, E = 0.082 V/m
We need to find the magnetic vector of the wave at the point P at that instant.
The relation between electric field and magnetic field is given by :

c is speed of light
B is magnetic field

So, the magnetic vector at point P at that instant is
.