Answer:
156.4g K
Explanation:
I'm not sure if it is correct but I think it should be this
What do we know so far?: 2K + 1Cl2 -> 2KCl, 2 mol of Cl2
What are we looking for?: #g of K
What is the ratio of K to Cl2?: 2:1
Set up equation: 2molCl2 x 
Cancel unwanted units: 2 x 
Answer we got: 2 x 2mol K = 4mol K
Converting moles to grams: 4 x 39.1 (molar mass of K) = 156.4g K
You would have to evaporate the water to get just the sugar
Answer:
2 mol H₂O
Explanation:
With the reaction,
- 2H₂(g) + O₂(g) → 2 H₂O(g)
1.55 moles of O₂ would react completely with ( 2*1.55 ) 3.1 moles of H₂. There are not as many moles of H₂, thus H₂ is the limiting reactant.
Now we <u>calculate the moles of H₂O produced</u>, <em>starting from the moles of limiting reactant</em>:
- 2.00 mol H₂ *
= 2 mol H₂O
Density<span> is </span>defined<span> as the ratio between mass and volume or mass per unit volume.
Source is google
</span>
Answer:
A chemical bond is defined as the force which helps to bind more than two atoms in a molecule. There are different types of chemical bonding are present in molecules such as:
1) Ionic bonding: Because of the transfer of electrons it is present in ionic compounds. BaS is an example of ionic bonding which is containing some covalent character.
2) Covenant bonding: Because of the sharing of electrons it forms molecules. Rubber is the example of covalent bonding with some van der walls.
3) Metallic bonding: In the free state it is present in atoms of metal such as Brass is a good example of a metallic bonding because it is a metal alloy.
4) Van der walls bonding: In atoms, It includes repulsion and attraction. Solid xenon is the example of Van der wall bonding because it is an inert gas.