Answer:
See below
Explanation:
KE = 1/2 m v^2 multiply both sides by 2
2 (KE) = mv^2 divide both sides by m
2(KE) / m = v^2 sqrt both sides
√ [(2KE)/m ] = v
Answer: A Answers. Assuming that the terminal velocity doesn't change during the fall, then the kinetic energy would remain constant. However the terminal velocity decreases during the fall since the air becomes denser at lower altitudes.
Explanation:
What happens to the KE of an object when it slows down and heats up? - Quora. The kinetic energy goes down and the loss of the kinetic energy is through the production of heat energy. In real world this is due to friction, or an opposing force that decelerates the object, or a combination of both.
The average acceleration between t = 5.6 s and t = 8.5 s is 2.31 m/s²
<h3>What is acceleration?</h3>
Acceleration is defined as the rate change of velocity with time.
acceleration a = (Δv) / (Δt)
An object is moving with initial velocity u =5.7 m/s and its final velocity v= -1.0 m/s.
Time taken for the change in speed, t= 8.5 - 5.6 = 2.9 seconds
The acceleration is given by
a = (-1 - 5.7)/ 2.9
a = - 2.31 m/s²
|a | = 2.31 m/s²
Thus, the object's acceleration is 2.31 m/s²
Learn more about acceleration.
brainly.com/question/12550364
#SPJ1
Answer: reliable
Explanation:
Reliable (marketing research) information is collected from questions (measurements) that are free from systematic or statistical error. An absence of systematic error implies that the respondents (i.e., the sampled people) who answer questions actually understand what the questions were asking.
The solution for this problem is:
For 1st minimum, let m be equal to 1.
d = slit width
D = screen distance.
Θ = arcsin (m * lambda/ (d))
= 0.13934 rad, 7.9836 deg
y = D*tan (Θ)
y = 6.50 * tan (7.9836)
= 0.91161 m is the distance from the central maximum to the first-order minimum