Answer:
Option (2)
Explanation:
From the figure attached,
Horizontal component, 
![A_x=12[\text{Sin}(37)]](https://tex.z-dn.net/?f=A_x%3D12%5B%5Ctext%7BSin%7D%2837%29%5D)
= 7.22 m
Vertical component, ![A_y=A[\text{Cos}(37)]](https://tex.z-dn.net/?f=A_y%3DA%5B%5Ctext%7BCos%7D%2837%29%5D)
= 9.58 m
Similarly, Horizontal component of vector C,
= C[Cos(60)]
= 6[Cos(60)]
= 
= 3 m
![C_y=6[\text{Sin}(60)]](https://tex.z-dn.net/?f=C_y%3D6%5B%5Ctext%7BSin%7D%2860%29%5D)
= 5.20 m
Resultant Horizontal component of the vectors A + C,
m
= 4.38 m
Now magnitude of the resultant will be,
From ΔOBC,

= 
= 
= 6.1 m
Direction of the resultant will be towards vector A.
tan(∠COB) = 
= 
= 
m∠COB = 
= 46°
Therefore, magnitude of the resultant vector will be 6.1 m and direction will be 46°.
Option (2) will be the answer.
Answer:
The thickness is 
Explanation:
From the question we are told that
The wavelength is 
The first order of the dark fringe is 
The second order of dark fringe considered is 
Generally the condition for destructive interference is mathematically represented as

Here y is the path difference between the central maxima(i.e the origin) and any dark fringe
So the path difference between the 16th dark fringe and the 6th dark fringe is mathematically represented as

=> 
=> 
=> 
Power is defined as the rate at which the body is doing work:

Work is defined as displacement done by the force times that displacement:

We know that we need 62N to move the box, so when we apply this force along the path of 10m we have done:

of work.
Now we just divide that by 5s to get how much power is required:
Answer:
please provide a link or pdf file to complete the assignment i will be more than happy to help. :D
Explanation: