Answer:
the spring constant k = 
the value for the damping constant 
Explanation:
From Hooke's Law

Thus; the spring constant k = 
The amplitude is decreasing 37% during one period of the motion


Therefore; the value for the damping constant 
The 78g box, since it has less weight, would accelerate faster. If you had a frictionless surface, and you conducted this experiment, both boxes, without any outside forces, would accelerate at the same rate forever. However, in this problem we must assume the surface is not frictionless. Friction is determined by weight; the more weight, the more friction. Since the 78g box has less weight, it has less friction, making it easier to push with less force.
In this item, we are asked to determine the speed of the bobsled given the distance traveled and the time it takes to cover the certain distance. This can mathematically be expressed as,
speed = distance / time
Substituting the given values in this item,
speed = (113 m) / (29 s)
speed = 3.90 m/s
<em>ANSWER: 3.90 m/s</em>
Answer:
The frequency is 302.05 Hz.
Explanation:
Given that,
Speed = 18.0 m/s
Suppose a train is traveling at 30.0 m/s relative to the ground in still air. The frequency of the note emitted by the train whistle is 262 Hz .
We need to calculate the frequency
Using formula of frequency

Where, f = frequency
v = speed of sound
= speed of passenger
= speed of source
Put the value into the formula


Hence, The frequency is 302.05 Hz.