Answer:
49.3 N
Explanation:
Given that Pulling up on a rope, you lift a 4.25 kg bucket of water from a well with an acceleration of 1.80 m/s2 . What is the tension in the rope?
The weight of the bucket of water = mg.
Weight = 4.25 × 9.8
Weight = 41.65 N
The tension and the weight will be opposite in direction.
Total force = ma
T - mg = ma
Make tension T the subject of formula
T = ma + mg
T = m ( a + g )
Substitutes all the parameters into the formula
T = 4.25 ( 1.8 + 9.8 )
T = 4.25 ( 11.6 )
T = 49.3 N
Therefore, the tension in the rope is 49.3 N approximately.
Answer:
1. Fleming's left hand rule
2. It must be projected towards the east
Explanation:
Fleming's left-hand rule states that; When a current-carrying conductor is placed in an external magnetic field, the conductor experiences a force perpendicular to both the field and to the direction of the current flow. This rule was first put forward by John Ambrose Fleming in the later part of the nineteenth century.
Hence if the thumb, fore finger and middle finger of the lefthand are held mutually at right angles to each other; the thumb shows the direction of motion, the fore finger shows the direction of the field while the middle finger shows the direction of the current.
Hence, if the alpha particle is projected eastwards(at right angles) to the uniform magnetic field, it will be deflected southwards in the magnetic field.
All that business about the crane and the rope and the falling
is only there to confuse us.
The piano ended up 5 meters above the ground.
Potential energy = (mass) (gravity) (height)
= (200 kg) (9.81 m/s²) (5 m)
= (200 · 9.81 · 5) (kg-m²/s²)
= 9,810 joules .
Answer:
A current can be induced in a conducting loop if it is exposed to a changing magnetic field. ... In other words, if the applied magnetic field is increasing, the current in the wire will flow in such a way that the magnetic field that it generates around the wire will decrease the applied magnetic field.
Explanation:
<h3>
Answer:</h3>
200 kg
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Physics</u>
<u>Newton's Law of Motions
</u>
Newton's 1st Law of Motion: An object at rest remains at rest and an object in motion stays in motion
Newton's 2nd Law of Motion: F = ma (Force is equal to [constant] mass times acceleration)
Newton's 3rd Law of Motion: For every action, there is an equal and opposite reaction<u>
</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] F = 3000 N
[Given] a = 15 m/s²
[Solve] m = <em>x</em> kg
<u>Step 2: Solve for </u><em><u>m</u></em>
- Substitute in variables [Newton's Second Law of Motion]: 3000 N = m(15 m/s²)
- [Mass] [Division Property of Equality] Isolate <em>m</em> [Cancel out units]: 200 kg = m
- [Mass] Rewrite: m = 200 kg