<span>Step 1 is to determine the mass of each part
Mass of Ca is 40.08 g
Mass of C is 12.01 g
Mass of O is 16.00 x 3 = 48.00 g
Step 2 is to determine the total mass of the compound
Total mass of CaCO3 is 40.08 + 12.01 + 48.00 = 100.09 g
Step 3 is to determine the % of each part using the following formula:
Mass of part / total mass x 100 =
40.08 / 100.09 x 100 = 40.04 % Ca
12.01 / 100.09 x 100 = 12.00 % C
48.00 / 100.09 x 100 = 47.96 % O
Step 4 is to double check by adding all percentages. If they equal 100, then I probably did it right. :)
40.04
+12.00
+47.96
=100.00</span><span>
</span>
Answer:
Yes
Explanation:
Natural gas is colorless and odorless, and explosive, so a sulfur-smell (similar to rotten eggs) is usually added for early detection of leaks. ... Natural gas is a fossil fuel. Natural gas is a non-renewable hydrocarbon used as a source of energy for heating, cooking, and electricity generation.
Answer:
See explaination
Explanation:
The mole balance for a constant-volume batch reactor is given such as, For a first-order isothermal reaction, the time to reach a given conversion is the same for constant-pressure and constant-volume reactors. Also, the time is the same for a reaction of any order if there is no change in the number of moles.
Please kindly check attachment for the step by step solution of the given problem.
Answer:
1.2*10^24 molecules of CF4
Explanation:
the molar mass of cf4 is 88.0043 g/mol
176/88.0043 = 2 moles of CF4
Then multiply by avogadro's number (6.022*10^23) to get the number of molecules
2*6.022*10^23 = 1.2*10^24 molecules of CF4