Answer:
.081 g of O2
Explanation:
4Cr + 3O2 -----> 2Cr2O3
.175 g Cr x [1 mole / 52.0 g] x [2 moles Cr2O3 / 4 moles Cr] x [152 g / 1 mole] = .256 g of Cr2O3
.175 g Cr x [1 mole / 52.0 g] x [3 moles O2 / 4 moles Cr] x [32 g / 1 mole] = .081 g of O2
Answer:
See image attached and explanation
Explanation:
The stratospheric ozone layer is very important in absorbing high-energy ultraviolet radiation that is harmful to living systems on earth. The concentration of ozone in the stratosphere is determined by both thermal and photochemical pathways for its decomposition. Nitric oxide, NO, is a trace constituent in the stratosphere that reacts with ozone to form nitrogen dioxide, NO2, and the diatomic oxygen molecule. The nitrogen-oxygen bond in NO2 is relatively weak. When an NO2 molecule encounters an oxygen atom, it transfers an oxygen, forming O2 and NO. The chemical reactions involved are formations of NO2 following by reaction of NO2 with atomic oxygen for form NO and O2. The sum of both reactions show that the overall reaction is simply the reaction of ozone with atomic oxygen to form two molecules of molecular oxygen. Hence, NO only serves as a catalyst, it does not undergo a permanent change itself.
562 grams because mass can not be created or destroyed
Answer:
Decreasing the temperature will shift the equilibrium leftwards towards reactants.
Explanation:
Hello!
In this case, since the reaction between chromate anions and hydrogen ions yields dichromate anions, water and heat, we can infer this is an exothermic reaction by which heat is released (remember in endothermic reactions heat is absorbed as a reactant), it means that considering the LeChatelier’s which states that increasing the temperature of an exothermic reaction shifts the equilibrium leftwards since heat is a product, otherwise (decreasing the temperature) the equilibrium will be shifted rightwards.
Therefore, decreasing the temperature is the perturbation that will shift the equilibrium leftwards towards the reactants.
Best regards!