Within the visible range of light, red<span> light waves are scattered the least by atmospheric gas molecules. So at sunrise and </span>sunset, when the sunlight travels a long path through the atmosphere to reach our eyes, the blue light has been mostly removed, leaving mostly red<span> and yellow light remaining.</span>
Answer:
23.34 %.
Explanation:
- The percentage of water must be calculated as a mass percent.
- We need to find the mass of water, and the total mass in one mole of the compound. For that we need to use the atomic masses of each element and take in consideration the number of atoms of each element in the formula unit.
- <em>Atomic masses of the elements:</em>
Cd: 112.411 g/mol, N: 14.0067 g/mol, O: 15.999 g/mol, and H: 1.008 g/mol.
- <em>Mass of the formula unit:</em>
Cd(NO₃)₂•4H₂O
mass of the formula unit = (At. mass of Cd) + 2(At. mass of N) + 10(At. mass of O) + 8(At. mass of H) = (112.411 g/mol) + 2(14.0067 g/mol) + 10(15.999 g/mol) + 8(1.008 g/mol) = 308.5 g/mol.
- <em> Mass of water in the formula unit:</em>
<em>mass of water</em> = (4 × 2 × 1.008 g/mol) + (4 × 15.999 g/mol) = 72.0 g/mol.
- <em>So, the percent of water in the compound = [mass of water / mass of the formula unit] × 100 = [(72.0 g/mol)/(308.5 g/mol)] × 100 = 23.34 %</em>
Answer:
Explanation:
The chemical equation is:
There are several definitions of acid and bases: Arrhenius', Bronsted-Lowry's and Lewis'.
Bronsted-Lowry model defines and <em>acid</em> as a donor of protons, H⁺.
In the given equation HNO₃ is such substance: it releases an donates its hdyrogen to form the H₃O⁺ ion.
On the other hand, a <em>base</em> is a substance that accepts protons.
In the reaction shown, H₂O accepts the proton from HNO₃ to form H₃O⁺.
Thus, H₂O is a base.
In turn, on the reactant sides the substances can be classified as acids or bases.
H₃O⁺ contain an hydrogen that can be donated and form H₂O; thus, it is an acid (the conjugated acid), and NO₃⁻ can accept a proton to form HNO₃; thus it is a base (the conjugated base).
The Cascades rain shadow can be described as such: ocean-influenced moist air masses are forced to rise when they meet the tall moun- tains. The rising air cools, condenses, and the moisture falls as precipitation. On the leeward (dry) side of the mountain, the now dry air warms and sinks.