Velocity =
(displacement)/(time for the displacement), in the direction of the displacement.
Displacement = 8 m south
Time for the displacement = 4 seconds
Direction of the displacement = south
Velocity (8 m south) / (4 seconds), to the south
Velocity = 2 m/s, toward the south
Answer: B. It demonstrates a behavior or particles.
Explanation: I took the test and got it right
Answer:
Yes
Explanation:
The given parameters are;
The speed with which the fastball is hit, u = 49.1 m/s (109.9 mph)
The angle in which the fastball is hit, θ = 22°
The distance of the field = 96 m (315 ft)
The range of the projectile motion of the fastball is given by the following formula

Where;
g = The acceleration due to gravity = 9.81 m/s², we have;

Yes, given that the ball's range is larger than the extent of the field, the batter is able to safely reach home.
Answer:
Term (symbol) Meaning
Standing wave Waves which appear to be vibrating vertically without traveling horizontally. Created from waves with identical frequency and amplitude interfering with one another while traveling in opposite directions.
Node Positions on a standing wave where the wave stays in a fixed position over time because of destructive interference.
Antinode Positions on a standing wave where the wave vibrates with maximum amplitude.
Fundamental frequency Lowest frequency of a standing wave that has the fewest number of nodes and antinodes.
Harmonic A standing wave that is a positive integer multiple of the fundamental frequency.
Explanation:
Answer:
B. 24.2 m/s
Explanation:
Given;
mass of the roller coaster, m = 450 kg
height of the roller coaster, h = 30 m
The maximum potential energy of the roller coaster due to its height is given by;



Therefore, the maximum speed of the roller coaster is 24.2 m/s.