Answer: 1766.667 Ω = 1.767kΩ
Explanation:
V=iR
where V is voltage in Volts (V), i is current in Amps (A), and R is resistance in Ohms(Ω).
3mA = 0.003 A
Rearranging the equation, we get
R=V/i
Now we are solving for resistance. Plug in 0.003 A and 5.3 V.
R = 5.3 / 0.003
= 1766.6667 Ω
= 1.7666667 kΩ
The 6s are repeating so round off to whichever value you need for exactness.
Answer:
Sell his crop, use his crop as food, and sell his crop
Explanation:
if two 1.5 ya alt batteries are connected to head to the tail the voltage is 3.0 volt it is the because the battery is insidious reduce a voltage equal to number of battery is multiplied by the voltage of individual
ANSWERS:
![-P_{2(a)} =15.6lbf/in^2\\-P_{2(b)} =30.146lbf/in^2\\ T_{2(a)} =0^oF\\T_{2(b)} =0^oF\\x_{2(b)} =49.87percent](https://tex.z-dn.net/?f=-P_%7B2%28a%29%7D%20%3D15.6lbf%2Fin%5E2%5C%5C-P_%7B2%28b%29%7D%20%3D30.146lbf%2Fin%5E2%5C%5C%20T_%7B2%28a%29%7D%20%3D0%5EoF%5C%5CT_%7B2%28b%29%7D%20%3D0%5EoF%5C%5Cx_%7B2%28b%29%7D%20%3D49.87percent)
Explanation:
Given:
Piston cylinder assembly which mean that the process is constant pressure process P=C.
<u>AMMONIA </u>
state(1)
saturated vapor ![x_{1} =1](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D1)
The temperature ![T_{1} =0^0 F](https://tex.z-dn.net/?f=T_%7B1%7D%20%3D0%5E0%20F)
Isothermal process ![T=C](https://tex.z-dn.net/?f=T%3DC)
a)
( double)
b)
(reduced by half)
To find the final state by giving the quality in lbf/in we assume the friction is neglected and the system is in equilibrium.
state(1)
using PVT data for saturated ammonia
![-P_{1} =30.416 lbf/in^2\\-v_{1} =v_{g} =9.11ft^3/lb](https://tex.z-dn.net/?f=-P_%7B1%7D%20%3D30.416%20lbf%2Fin%5E2%5C%5C-v_%7B1%7D%20%3Dv_%7Bg%7D%20%3D9.11ft%5E3%2Flb)
then the state exists in the supper heated region.
a) from standard data
![-v_{1(a)} =2v_{1} =18.22ft^3/lb\\-T_{1} =0^oF](https://tex.z-dn.net/?f=-v_%7B1%28a%29%7D%20%3D2v_%7B1%7D%20%3D18.22ft%5E3%2Flb%5C%5C-T_%7B1%7D%20%3D0%5EoF)
![at\\P_{x} =14lbf/in^2\\-v_{x} =20.289 ft^3/kg](https://tex.z-dn.net/?f=at%5C%5CP_%7Bx%7D%20%3D14lbf%2Fin%5E2%5C%5C-v_%7Bx%7D%20%3D20.289%20ft%5E3%2Fkg)
![at\\P_{y} =16 lbf/in^2\\-v_{y} =17.701ft^3/kg](https://tex.z-dn.net/?f=at%5C%5CP_%7By%7D%20%3D16%20lbf%2Fin%5E2%5C%5C-v_%7By%7D%20%3D17.701ft%5E3%2Fkg)
assume linear interpolation
![\frac{P_{x}-P_{2(b)} }{P_{x}- P_{y} } =\frac{v_{x}-v_{1(a)} }{v_{x}-v_{y} }](https://tex.z-dn.net/?f=%5Cfrac%7BP_%7Bx%7D-P_%7B2%28b%29%7D%20%20%7D%7BP_%7Bx%7D-%20P_%7By%7D%20%7D%20%3D%5Cfrac%7Bv_%7Bx%7D-v_%7B1%28a%29%7D%20%20%7D%7Bv_%7Bx%7D-v_%7By%7D%20%20%7D)
![P_{1(b)}=P_{x} -(P_{x} -P_{y} )*\frac{v_{x}- v_{1(b)} }{v_{x}-v_{y} }\\ \\P_{1(b)} =14-(14-16)*\frac{20.289-18.22}{20.289-17.701} =15.6lbf/in^2](https://tex.z-dn.net/?f=P_%7B1%28b%29%7D%3DP_%7Bx%7D%20-%28P_%7Bx%7D%20-P_%7By%7D%20%29%2A%5Cfrac%7Bv_%7Bx%7D-%20v_%7B1%28b%29%7D%20%7D%7Bv_%7Bx%7D-v_%7By%7D%20%20%7D%5C%5C%20%5C%5CP_%7B1%28b%29%7D%20%3D14-%2814-16%29%2A%5Cfrac%7B20.289-18.22%7D%7B20.289-17.701%7D%20%3D15.6lbf%2Fin%5E2)
b)
![-v_{2(a)} =2v_{1} =4.555ft^3/lb\\v_{g}](https://tex.z-dn.net/?f=-v_%7B2%28a%29%7D%20%3D2v_%7B1%7D%20%3D4.555ft%5E3%2Flb%5C%5Cv_%7Bg%7D%20%3Cv_%7B2%28a%29%7D)
from standard data
![-v_{f} =0.02419ft^3/kg\\-v_{g} =9.11ft^3/kg\\v_{f}](https://tex.z-dn.net/?f=-v_%7Bf%7D%20%3D0.02419ft%5E3%2Fkg%5C%5C-v_%7Bg%7D%20%3D9.11ft%5E3%2Fkg%5C%5Cv_%7Bf%7D%20%3Cv_%7B2%28a%29%7D%20%3Cv_%7Bg%7D)
then the state exist in the wet zone
![-P_{s} =30.146lbf/in^2\\v_{2(a)} =v_{f} +x(v_{g} -v_{f} )](https://tex.z-dn.net/?f=-P_%7Bs%7D%20%3D30.146lbf%2Fin%5E2%5C%5Cv_%7B2%28a%29%7D%20%3Dv_%7Bf%7D%20%2Bx%28v_%7Bg%7D%20-v_%7Bf%7D%20%29)
![x=\frac{v_{2(a)-v_{f} } }{v_{g} -v_{f} } \\x=\frac{4.555-0.02419}{9.11-0.02419} =49.87%](https://tex.z-dn.net/?f=x%3D%5Cfrac%7Bv_%7B2%28a%29-v_%7Bf%7D%20%7D%20%7D%7Bv_%7Bg%7D%20-v_%7Bf%7D%20%7D%20%5C%5Cx%3D%5Cfrac%7B4.555-0.02419%7D%7B9.11-0.02419%7D%20%3D49.87%25)
Answer:
Realigning the mirror
Explanation:
mirrors should be aligned to minimize blind spots, not look at the tires.