Answer:
t=2.025 inches
Explanation:
Given that
P = 400 Psi
Yield stress ,σ = 80 ksi
Diameter ,d= 45 ft
We know that
1 ft = 12 inches
d= 540 inches
Factor of safety ,K= 3
The required thickness given as

t=thickness


t=2.025 inches
Therefore thickness will be 2.025 inches.
Workers who work with TOXIC chemicals may require regular medical checkups on a more frequent basis as a result of contact.
Take another picture i cant see nun
Answer:
a) 0.697*10³ lb.in
b) 6.352 ksi
Explanation:
a)
For cylinder AB:
Let Length of AB = 12 in


For cylinder BC:
Let Length of BC = 18 in




b) Maximum shear stress in BC

Maximum shear stress in AB

Answer:
The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Xₚբᵣ = 0.632
X꜀ₘբᵣ = 0.5
Xₚբᵣ > X꜀ₘբᵣ
Explanation:
From the reaction rate coefficient, it is evident the reaction is a first order reaction
Performance equation for a CMFR for a first order reaction is
kτ = (X)/(1 - X)
k = reaction rate constant = 0.05 /day
τ = Time constant or holding time = V/F₀
V = volume of reactor = 280 m³
F₀ = Flowrate into the reactor = 14 m³/day
X = conversion
k(V/F₀) = (X)/(1 - X)
0.05 × (280/14) = X/(1 - X)
1 = X/(1 - X)
X = 1 - X
2X = 1
X = 1/2 = 0.5
For the PFR
Performance equation for a first order reaction is given by
kτ = In [1/(1 - X)]
The parameters are the same as above,
0.05 × (280/14) = In (1/(1-X)
1 = In (1/(1-X))
e = 1/(1 - X)
2.718 = 1/(1 - X)
1 - X = 1/2.718
1 - X = 0.3679
X = 1 - 0.3679
X = 0.632
The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.