Answer:
Minimum electrical power required = 3.784 Watts
Minimum battery size needed = 3.03 Amp-hr
Explanation:
Temperature of the beverages, 
Outside temperature, 
rate of insulation, 
To get the minimum electrical power required, use the relation below:

V = 5 V
Power = IV

If the cooler is supposed to work for 4 hours, t = 4 hours

Minimum battery size needed = 3.03 Amp-hr
Answer:
#include <iostream>
using namespace std;
void PrintPopcornTime(int bagOunces) {
if(bagOunces < 3){
cout << "Too small";
cout << endl;
}
else if(bagOunces > 10){
cout << "Too large";
cout << endl;
}
else{
cout << (6 * bagOunces) << " seconds" << endl;
}
}
int main() {
PrintPopcornTime(7);
return 0;
}
Explanation:
Using C++ to write the program. In line 1 we define the header "#include <iostream>" that defines the standard input/output stream objects. In line 2 "using namespace std" gives me the ability to use classes or functions, From lines 5 to 17 we define the function "PrintPopcornTime(), with int parameter bagOunces" Line 19 we can then call the function using 7 as the argument "PrintPopcornTime(7);" to get the expected output.
Answer:
(a) 0.12924
(b) Taking into consideration significance level of 0.05 yet the value of p is greater than 0.05, it suggests that the coin is fair hence the coin can be used at the beginning of any sport event.
Explanation:
(a)
n=200 for fair coin getting head, p= 0.5
Expectation = np =200*0.5=100
Variance = np(1 - p) = 100(1-0.5)=100*0.5=50
Standard deviation,
Z value for 108,
P( x ≥108) = P( z >1.13)= 0.12924
(b)
Taking into consideration significance level of 0.05 yet the value of p is greater than 0.05, it suggests that the coin is fair hence the coin can be used at the beginning of any sport event.