This means that they mixed .
Answer:
=> 1366.120 g/mL.
Explanation:
To determine the formula to use in solving such a problem, you have to consider what you have been given.
We have;
mass (m) = 25 Kg
Volume (v) = 18.3 mL.
From our question, we are to determine the density (rho) of the rock.
The formula:

First let's convert 25 Kg to g;
1 Kg = 1000 g
25 Kg = ?

= 25000 g
Substitute the values into the formula:

= 1366.120 g/mL.
Therefore, the density (rho) of the rock is 1366.120 g/mL.
Answer:
See explanation
Explanation:
The question is incomplete because the image of the alcohol is missing. However, I will try give you a general picture of the reaction known as hydroboration of alkenes.
This reaction occurs in two steps. In the first step, -BH2 and H add to the same face of the double bond (syn addition).
In the second step, alkaline hydrogen peroxide is added and the alcohol is formed.
Note that the BH2 and H adds to the two atoms of the double bond. The final product of the reaction appears as if water was added to the original alkene following an anti-Markovnikov mechanism.
Steric hindrance is known to play a major role in this reaction as good yield of the anti-Markovnikov like product is obtained with alkenes having one of the carbon atoms of the double bond significantly hindered.
Answer:
1. A state of balance in which the rates of the forward and reverse reactions are equal.
Explanation:
A dynamic equilibrium is like a cycle, the reactants change to products, but the products also change to reactants keeping the amount of each constant.
2. A state of balance in which the forward reaction stops but reverse reaction continues.
In this statement there isnt a equilibrium. The products will change to reactants until the reaction stops.
3. A state of balance in which the forward reaction continues but reverse reaction stops.
Here the reactants will change to products until the reaction stops.
4. A state of balance in which the forward and reverse reactions stop.
In this case the reaction has stopped.
Probably the kinetic energy of rubbing the pump against the valve, combined with the increase in gas pressure in the tire itself.