Answer:
Weathering, erosion, and deposition from the terrestrial surface topography and soil characteristics. These processes, for example, have formed a variety of landforms in Texas like beaches, plateaus, mountains, and canyons as well as soil types like fertile soil, clay-rich soil, and sandy soil. The combination of topography, soil, and climatic conditions in an area defines the types of habitats that the area can support this is crucial to ecoregion classification. Ten separate ecoregions occur in Texas including 1) East Texas Pineywoods, 2) Gulf Coast Prairies and Marshes, 3) Oak Woods and Prairies, 4) Blackland Prairie, 5) cross timbers and prairies (6) Rolling Plains, (7) High Plains, (8) TransPecos, (9) South Texas Plains, (Brush Country), and (10) Edwards Plateau. Such ecoregions are named for the major types of habitats topographical features (e.g. Edwards Plateau) present in their areas. The weathering, erosion, and deposition of each of these ecoregions have an important influence.
Answer:
F = 0 [N]
Explanation:
To solve this problem we must perform a summation of forces in the direction of the vertical axis. Where the positive force is that of the tension of the upward force, while the force exerted by the weight is directed downward with a negative sign.
ΣF = 0
15 - 15 + F = 0
F = 0 [N]
Answer:
Explanation:
The angular momentum of electron mvR = 6 x 10⁻²⁵ Js
Magnetic field B = 2.5 x 10⁻³ T
radius of circular path R = mv / Bq
where m is mass , v is velocity and q is charge on electron
R² = mvR / Bq
R² = 6 x 10⁻²⁵ / 2.5 x 10⁻³ x 1.6 x 10⁻¹⁹
= 1.5 x 10⁻³
R = 3.87 x 10⁻² m
mvR = 6 x 10⁻²⁵
v = 6 x 10⁻²⁵ / mR
= 6 x 10⁻²⁵ / 9.1 x 10⁻³¹ x 3.87 x 10⁻²
= .17 x 10⁸
= 17 x 10⁶ m/s
What is it about, I can help.
Answer with Explanation:
The direction of the electric field line at any point gives us the direction of the electric force that will act on a positive charge if placed at the point. We know that if we place a charge in an electric field it will experience a force, as we know that force is a vector quantity hence it requires both magnitude and direction for it's complete description. The direction of this electric force that acts on a charge is given by the direction of the electric field in the space. In case the charge is negatively charged electric force will act on it in the direction opposite to the direction of electric field at the point.