Answer:
a) The functional group that will be evident in the IR spectrum is the OH group.
b) OH group appears between 3200-3600 cm⁻¹
c) An important impurity that have the same functional group is water.
Explanation:
Eugenol is a chemical substance that consist in a benzene that have in 1 an alcohol, in position 2 a methyl ether and in position 4 an 1-propene bonded by the terminal alkyl carbon.
a) Having this in mind, the functional group that will be evident in the IR spectrum is the OH group.
b) This OH group appears between 3200-3600 cm⁻¹
c) An important impurity that have the same functional group is water. When you have water in your sample a big signal will appear in this zone and it is possible that overlapes the OH signal of eugenol.
I hope it helps!
An atom that has 13 protons and 15 neutrons is isotope of Aluminium (answer C)
<u><em>Explanation</em></u>
- Isotope is a form of the same element with the equal number of protons but difference number of neutrons in their nuclei.
- In other words isotope has the same atomic number but different mass number.
- Atomic number of a element is determined by number of protons of an element.
- from the periodic table Aluminum in atomic number 13 therefore it has 13 protons <em>therefore an atom that has 13 protons and 15 neutrons is a isotope of Aluminium. </em>
Procedures that are likely a chemical change are:
- Bubbles were produced when iron was placed in acid.
- Two liquids were combined, and a solid appeared
- A white substance turned blue when water was added.
To determine which order of the reaction it is, first we need to calculate the rate of change of moles.
the data is as follows
time 0 40 80 120 160
moles 0.100 0.067 0.045 0.030 0.020
Q1)
for the first 40 s change of moles ;
= -d[A] / t
= - (0.067-0.100)/40s
= 8.25 x 10⁻⁴ mol/s
for the next 40 s
= -(0.045-0.067)/40
= 5.5 x 10⁻⁴ mol/s
the 40 s after that
= -(0.030-0.045)/40 s
= 3.75 x 10⁻⁴ mol/s
k - rate constant
and A is the only reactant that affects the rate of the reaction
rate = k [A]ᵇ
8.25 × 10⁻⁴ mol/s = k [0.100 mol]ᵇ ----1
5.5 x 10⁻⁴ mol/s = k [0.067 mol]ᵇ -----2
divide the 2nd equation by the 1st equation
1.5 = [1.49]ᵇ
b is almost equal to 1
Therefore this is a first order reaction
Q2)
to find out the rate constant(k), we have to first state the equation for a first order reaction.
rate = k[A]ᵇ
As A is the only reactant thats considered for the rate equation.
Since this is a first order reaction,
b = 1
therefore the reaction is
rate = k[A]
substituting the values,
8.25 x 10⁻⁴ mol/s = k [0.100 mol]
k = 8.25 x 10⁻⁴ mol/s /0.100mol
= 8.25 x 10⁻³ s⁻¹