Given what we know, we can confirm that the amount of heat energy that would be required in order to boil 5.05g of water is that of 11.4kJ of heat.
<h3>Why does it take this much energy to boil the water?</h3>
We arrive at this number by taking into account the energy needed to boil 1g of water to its vaporization point. This results in the use of 2260 J of heat energy. We then take this number and multiply it by the total grams of water being heated, in this case, 5.05g, which gives us our answer of 11.4 kJ of energy required.
Therefore, we can confirm that the amount of heat energy that would be required in order to boil 5.05g of water is that of 11.4kJ of heat.
To learn more about the behavior of water visit:
brainly.com/question/1416592?referrer=searchResults
The graph is not given in the question, so, the required graph is attached below:
Answer:
According to the graph, the relationship between the density of the sugar solution and the concentration of the sugar solution is directly proportional to each other as they both are increasing exponentially.
The graph shows that, the density of sugar solution will increase with the increase in concentration of sugar in the solution.
A substance that is impenetrable by x-rays is described as being radiopaque.
Radiopaque substances will not allow x-rays and or other forms of radiations to pass through them.
Instead, they absorb or block the rays and when used in radiology, they appear white or light gray on photographic films.
Radiopaque materials are applied in generating ultrasound images and other forms of clinical procedures.
More on radiopaque materials can be found here: brainly.com/question/10583205?referrer=searchResults
Answer:
A mixture can contain components in any proportions while a compound contains components in fixed proportions. All components in a mixture do not chemically react, while the components in a compound do react and their original properties are lost.
When a liquid releases enough energy<span>. the </span>liquid<span> freezes, changing to a solid.
Hope this answer helps! feel free to ask any additional questions :)</span>