The frequency of the light source is 1.5 x 10¹⁵ Hz.
<h3>
Frequency of the light source</h3>
The frequency of the light source is determined using the following equations;
c = fλ
where;
c is speed of light
f is the frequency
λ is the wavelength
f = (3 x 10⁸) / (2 x 10⁻⁷)
f = 1.5 x 10¹⁵ Hz
Thus, the frequency of the light source is 1.5 x 10¹⁵ Hz.
Learn more about frequency of light here: brainly.com/question/10728818
Answer:
(b) The electrons, because they have the smaller momentum and, hence, the larger de Broglie wavelength
Explanation:
de Broglie wavelength λ = h / m v
Since both electrons and protons have same velocity , momentum mv will be less for electrons because mass of electron is less .
for electron , momentum is less so . Therefore de Broglie wavelength λ will be more for electrons .
Amount of diffraction that is angle of diffraction is proportional to λ
Therefore electrons having greater de Broglie wavelength will show greater diffraction.
Answer:
Explanation:
Unbalanced forces will result in the presence of acceleration. The formula
F net = ma
says that if there is a net force present and the object in question has a mass, then an acceleration is present. Now acceleration is constant in this situation because nowhere does it say the acceleration is changing. If acceleration is constant then the velocity is increasing at a steady pace (think linear function!).
The direction of the object depends on the direction that the net force is in. If the net force is to the left, then that object will accelerate to the left.
Hope this helps :)
Answer:
Gamma-rays have the smallest wavelengths and the most energy of any other wave in the electromagnetic spectrum. These waves are generated by radioactive atoms and in nuclear explosions.
Explanation:
Gamma-rays can kill living cells, a fact which medicine uses to its advantage, using gamma-rays to kill cancerous cells.
Hope this helps!
Brain-LIst?