Answer:
THE MOLARITY IS 2.22 MOL/DM3
Explanation:
The solution formed was as a result of dissolving 37.5 g of Na2S in 217 g of water
Relative molecular mass of Na2S = ( 23* 2 + 32) = 78 g/mol
Molarity in g/dm3 is the amount of the substance dissolved in 1000 g or 1 L of the solvent. So we have;
37.5 g of Na2S = 217 g of water
( 37.5 * 1000 / 217 ) g = 1000 g of water
So, 172.81 g/dm3 of the solution
So therefore, molarity in mol/dm3 = mol in g/dm3 / molar mass
Molarity = 172.81 g/dm3 / 78 g/mol
Molarity = 2.22 mol/dm3
The molarity of the solution is 2.22 mol/dm3
Answer:
44.8 L
Explanation:
Using the ideal gas law equation:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
At Standard temperature and pressure (STP);
P = 1 atm
T = 273K
Hence, when n = 2moles, the volume of the gas is:
Using PV = nRT
1 × V = 2 × 0.0821 × 273
V = 44.83
V = 44.8 L
Both. Every nucleotide has a sugar, a nitrogenous base, and a phosphate group
Answer:
The law of floatation is applied in all vessels which travel by waterways that include ships, submarines and ferry boats. It is also applied in some vessels which travel by air ways such as hot air balloon and air ship. Balloons of different colors and shapes are filled with lighter gas so that will float in air.