Answer:
It gives the number of protons in the nucleus of each atom of that element.
Explanation:
See the sketch attached.
<h3>Explanation</h3>
The Lewis structure of a molecule describes
- the number of bonds it has,
- the source of electrons in each bond, and
- the position of any lone pairs of electrons.
Atoms are most stable when they have eight or no electrons in their valence shell (or two, in case of hydrogen.)
- Each oxygen atom contains six valence electrons. It demands <em>two</em> extra electrons to be chemically stable.
- Each sulfur atom contains six valence electrons. It demands <em>two </em> extra electrons to be chemically stable.
- Each hydrogen atom demands <em>one</em> extra electron to be stable.
H₂O contains two hydrogen atoms and one oxygen atom. It would take an extra 2 + 2 × 1 = 4 electrons for all its three atoms are stable. Atoms in an H₂O would achieve that need by sharing electrons. It would form a total of 4 / 2 = 2 O-H bonds.
Each O-H bond contains one electron from oxygen and one from hydrogen. Hydrogen has no electron left. Oxygen has six electrons. Two of them have went to the two O-H bonds. The remaining four become 4 / 2 = 2 lone pairs. The lone pairs repel the O-H bonds. By convention, they are placed on top of the two H atoms.
Similarly, atoms in a SO₂ molecule demands an extra 2 × 2 + 2 = 6 electrons for its three atoms to become chemically stable. It would form 6 / 2 = 3 chemical bonds. Loops are unlikely in molecules without carbon. As a result, one of the two O atoms would form two bonds with the S atom while the other form only one.
Atoms are unstable with an odd number of valence electrons. The S atom in SO₂ would have become unstable if it contribute one electron to each of the three bond. It would end up with 3 × 2 + 3 = 9 valence electrons. One possible solution is that it contributes two electrons in one particular bond. One of the three bonds would be a coordinate covalent bond, with both electrons in that bond from the S atom. In some textbooks this type of bonds are also known as dative bonds.
Dots and crosses denotes the origin of electrons in a bond. Use the same symbol for electrons from the same atom. Electrons from the oxygen atoms O are shown in blue in the sketch. They don't have to be colored.
Answer:4.42 g= 1 mol/55.845 =.079 moles of Fe
Explanation:Given 4.42 grams of Fe. The atomic weight of Fe(iron) found on the periodic table is 55.845. Divide grams by the atomic weight to convert to moles.
Answer:
See explanation
Explanation:
Chlorine is a member of the halogen family known as a toxic yellowish green gas. Inhalation of chlorine for a prolonged period of time leads to pulmonary edema. If a person comes in contact with compressed liquid chlorine the person may experience frostbite of the skin and eyes.
However chlorine is very useful in water disinfection and is preferred in water treatment because it provides residual disinfection of the treated water.
Chlorine gas may be dissolved in NaOH to form oxochlorate I which is used as a bleach in cleaning.
1. "Fn" stands for "Normal Force," "Fg" for "Gravity Force," "Ff" for "Force Friction," and "A" for "Applied Force." 2. As a result of the friction, which causes the ball to stop. 3. The reason the ball rolls is due to the force that is imparted to it.
The definition of force is: The push or pull on a massed object changes its velocity. An external force is an agent that has the power to alter the resting or moving condition of a body. It has a direction and a magnitude. A force that opposes this motion of the hands is activated when they brush against one another. Frictional force is the force resisting motion applied in the direction perpendicular to the direction of motion of the hands.
Learn more about Force here-
brainly.com/question/13191643
#SPJ9