The balanced equation for the above reaction is as follows;
2S + 3O₂ --> 2SO₃
Stoichiometry of O₂ to SO₃ is 3:2
O₂ is the limiting reactant and S is provided in excess. since O₂ is the limiting reactant, the whole amount is consumed in the reaction and amount of product formed depends on amount of limiting reactant present.
Number of O₂ moles reacted- 4 g / 32 g/mol = 0.125 mol
3 mol of O₂ forms 2 mol of SO₃
therefore when 0.125 mol of O₂ reacts number of SO₃ moles - 2/3 x 0.125 mol
Number of SO₃ moles formed - 0.0833 mol
Answer is 4) 0.08 mol
Answer:
The same holds true for pH values above 7, each of which is ten times more alkaline (another way to say basic) than the next lower whole value. For example, pH 10 is ten times more alkaline than pH 9 and 100 times (10 times 10) more alkaline than pH 8.
Explanation:
Given what we know, the ability of water to absorb more heat than the other substances mentioned is a reflection of its high boiling point.
<h3>What do we mean by boiling point?</h3>
This is the temperature at which the substance boils, and subsequently evaporates. Having a higher boiling point means that the substance will be able to absorb much more heat than that of a substance with a lower boiling point.
Therefore, Water molecules have a higher boiling point than molecules of similar size, such as ammonia and methane, reflecting its capacity to absorb large amounts of heat.
To learn more about water molecules visit:
brainly.com/question/11405437?referrer=searchResults