Answer:
Al(C2H3O2)3 (aq) + 3AgNO3 (aq) ------>Al(NO3)3(aq) + 3Ag(C2H3O2)(s)
Explanation:
A chemical reaction refers to an interaction between two or more chemical species that leads to the formation of other new chemical species.
There are many types of chemical reactions. The type shown above is called a double replacement reaction. In this type of reaction, ions exchange partners in the product.
A chemical reaction is said to be balanced when the number of atoms of each element on the left hand and right hand sides of the reaction equation are exactly the same.
Answer:
The elements become less reactive.
Explanation:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction and reactivity increases because of greater electron affinity.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased. The electron affinity decreases because of shielding effect and thus atom become less reactive.
The molarity is moles/liters.
First, convert 4,000 mL to L:
4000 mL --> 4 L
Now, you must convert the 17 g of solute to moles by dividing the number of grams by the molar mass. The molar mass of AgNO3 is <span>169.87 g/mol:
17 / 169.87 = .1
Now that you have both the number of moles and the liters, plug them into the initial equation of moles/liters:
.1/4 = .025</span>
I believe the answer is B!
<span>A-U-G - G-C-A
Met - Ala
If AUG is going to be in the beginning of the chain, </span>A-U-G, also will mean a start codon. For eukaryotes, codon for Met means start of the amino acid chain.