Answer:
mass of S₈ = 96.1146 grams
Explanation:
The balanced equation that describe the reaction is as follows:
8 Fe + S₈ ..............> 8 FeS
From the equation, we can note that:
8 moles of Fe react with 1 mole of S₈
This means that:
8 * 55.8 grams of iron react with 8 * 32 grams of S₈.
To know the mass of S₈ that will react with 167.6 grams of Fe, we will simply do cross multiplication as follows:
mass of S₈ = (167.6 * 8 * 32) / (8 * 55.8)
mass of S₈ = 96.1146 grams
Hope this helps :)
The percentage of atoms in the universe that are hydrogen are 90%
d. Fe(s) and Al(s)
<h3>Further explanation</h3>
In the redox reaction, it is also known
Reducing agents are substances that experience oxidation
Oxidizing agents are substances that experience reduction
The metal activity series is expressed in voltaic series
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The more to the left, the metal is more reactive (easily release electrons) and the stronger reducing agent
The more to the right, the metal is less reactive (harder to release electrons) and the stronger oxidizing agent
So that the metal located on the left can push the metal on the right in the redox reaction
The electrodes which are easier to reduce than hydrogen (H), have E cells = +
The electrodes which are easier to oxidize than hydrogen have a sign E cell = -
So the above metals or metal ions will reduce Pb²⁺ (aq) will be located to the left of the Pb in the voltaic series or which have a more negative E cell value (greater reduction power)
The metal : d. Fe(s) and Al(s)
Explanation:
Haemoglobin consists of heme unit which is comprised of an <u>
</u> and porphyrin ring. The ring has four pyrrole molecules which are linked to the iron ion. In oxyhaemoglobin, the iron has coordinates with four nitrogen atoms and one to the F8 histidine residue and the sixth one to the oxygen. In deoxyhaemoglobin, the ion is displaced out of the ring by 0.4 Å.
The prosthetic group of hemoglobin and myoglobin is - <u>Heme</u>
The organic ring component of heme is - <u>Porphyrin</u>
Under normal conditions, the central atom of heme is - <u>
</u>
In <u>deoxyhemoglobin</u> , the central iron atom is displaced 0.4 Å out of the plane of the porphyrin ring system.
The central atom has <u>six</u> bonds: <u>four</u> to nitrogen atoms in the porphyrin, one to a <u>histidine</u> residue, and one to oxygen.