Answer: Remain unchanged
Explanation:
The boat with water barrel overboard floats in swimming pool when weight of the water displaced by the boat is equal to the buoyant force acting on the boat.
When the water in the barrel is poured overboard, the level of the swimming pool level would remain unchanged as the weight of the boat with the water and barrel would remain unchanged ( as the density and volume of the whole system remains same) and hence, the weight of the water (of the swimming pool) displaced by the boat would remain same.
A boat loaded with a barrel of water floats in a swimming pool. When the water in the barrel is poured overboard, the swimming pool level will <u>remain unchanged. </u>
Answer:
Inhibit the flow of electrons
Explanation:
An electric current usually consists of electrons moving through a wire.
An insulator prevents the flow of an electric current, so it inhibits the flow of electrons.
Maybe you can divide the volts its twelve if you do that but itll show you how much to double it by
Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:
