Hi there!
(a)
Recall that:

W = Work (J)
F = Force (N)
d = Displacement (m)
Since this is a dot product, we only use the component of force that is IN the direction of the displacement. We can use the horizontal component of the given force to solve for the work.

To the nearest multiple of ten:

(b)
The object is not being displaced vertically. Since the displacement (horizontal) is perpendicular to the force of gravity (vertical), cos(90°) = 0, and there is NO work done by gravity.
Thus:

(c)
Similarly, the normal force is perpendicular to the displacement, so:

(d)
Recall that the force of kinetic friction is given by:

Since the force of friction resists the applied force (assigned the positive direction), the work due to friction is NEGATIVE because energy is being LOST. Thus:

In multiples of ten:

(e)
Simply add up the above values of work to find the net work.

Nearest multiple of ten:

(f)
Similarly, we can use a summation of forces in the HORIZONTAL direction. (cosine of the applied force)



Nearest multiple of ten:

Answer:
Traction
Explanation:
Enter a curve slower than the posted speed if your vehicle has a high center of gravity or if surface Traction is less than ideal.
Traction is an act of drawing or pulling something over a surface specially a road or a track or it also defined as the grip of a tire on road or a wheel on rail. So speed when entering a curve should be slower when the tire has low traction to avoid accident.
Velocity is define as how fast an object is moving, and in what direction, it is a vector quantity, meaning velocity has both magnitude and direction. Anything goes to the left is negative, and anything goes to the right is positive.
a. Direction from east to west, given distance 11.5 meters, and time of 7.10 s
V = displacement/time V = -11.5/7.10 S V = -1.62 m/s (going left)
b. Joaquin reaches his original position. Displacement is now zero.
Velocity of the lawnmower is equal to "zero" but if we calculate for the average speed of the lawn, you just have to add the distance covered and the time it take to go back at the original position or point of origin
Answer:
v = 12.4 [m/s]
Explanation:
With the speed and Area information, we can determine the volumetric flow.

where:
r = radius = 0.0120 [m]
v = 2.88 [m/s]
![A=\pi *(0.0120)^{2} \\A=4.523*10^{-4} [m]\\](https://tex.z-dn.net/?f=A%3D%5Cpi%20%2A%280.0120%29%5E%7B2%7D%20%5C%5CA%3D4.523%2A10%5E%7B-4%7D%20%5Bm%5D%5C%5C)
Therefore the flow is:
![V=2.88*4.523*10^{-4} \\V=1.302*10^{-3} [m^{3}/s ]](https://tex.z-dn.net/?f=V%3D2.88%2A4.523%2A10%5E%7B-4%7D%20%5C%5CV%3D1.302%2A10%5E%7B-3%7D%20%5Bm%5E%7B3%7D%2Fs%20%5D)
Despite the fact that you cover the inlet with the finger, the volumetric flow rate is the same.
![v=V/A\\v=1.302*10^{-3} /1.05*10^{-4} \\v=12.4[m/s]](https://tex.z-dn.net/?f=v%3DV%2FA%5C%5Cv%3D1.302%2A10%5E%7B-3%7D%20%2F1.05%2A10%5E%7B-4%7D%20%5C%5Cv%3D12.4%5Bm%2Fs%5D)