Answer: 1,839,600 minutes.
Explanation: 3.5 years to minutes has been calculated by multiplying 3.5 years by 525,600
Answer:
255.51cm3
Explanation:
Data obtained from the question include:
V1 (initial volume) =?
T1 (initial temperature) = 50°C = 50 + 273 = 323K
T2 (final temperature) = - 5°C = - 5 + 237 = 268K
V2 (final volume) = 212cm3
Using the Charles' law equation V1/T1 = V2/T2, the initial volume of the gas can be obtained as follow:
V1/T1 = V2/T2
V1/323 = 212/268
Cross multiply to express in linear form
V1 x 268 = 323 x 212
Divide both side by 268
V1 = (323 x 212)/268
V1 = 255.51cm3
Therefore, the initial volume of the gas is 255.51cm3
Each element or compound has a molar mass, which is calculated by multiplying the atomic mass of each element by the amount of atoms of that element, and summing the results of each element. The molar mass is measured in g/mol. So you divide the mass in grams by the molar mass to get the amount of moles.
Example:
There are 5g of water.
Calculate the amount of moles.
The water's formula is H2O, so the molar mass of it is
g/mol.
The amount of moles is:
5g ÷ 18g/mol ~ 0.28mol
Answer:
2NO(g) + O2(g) ---> 2NO2(g)
Explanation:
The mechanism for this reaction involves two elementary reactions in which both are bimolecular as shown below;
NO(g) +O2(g) ----> NO2(g) + O(g)
NO(g) + O(g) ----> NO2(g)
Hence overall balanced reaction equation;
2NO(g) + O2(g) ---> 2NO2(g)