Answer:
The answer to your question is SO₂ + 3H₂ ⇒ H₂S + 2H₂O
Explanation:
Reaction
SO₂ + H₂ ⇒ H₂S + H₂O
Reactants Elements Products
1 Sulfur 1
2 Hydrogen 4
2 Oxygen 1
This reaction is unbalanced so we need to balance it.
SO₂ + 3H₂ ⇒ H₂S + 2H₂O
Reactants Elements Products
1 Sulfur 1
6 Hydrogen 6
2 Oxygen 2
Now, the reaction is balanced
Answer:
![[CO]=[Cl_2]=0.01436M](https://tex.z-dn.net/?f=%5BCO%5D%3D%5BCl_2%5D%3D0.01436M)
![[COCl_2]=0.00064M](https://tex.z-dn.net/?f=%5BCOCl_2%5D%3D0.00064M)
Explanation:
Hello there!
In this case, according to the given chemical reaction at equilibrium, we can set up the equilibrium expression as follows:
![K=\frac{[CO][Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BCO%5D%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Which can be written in terms of x, according to the ICE table:

Thus, we solve for x to obtain that it has a value of 0.01436 M and therefore, the concentrations at equilibrium turn out to be:
![[CO]=[Cl_2]=0.01436M](https://tex.z-dn.net/?f=%5BCO%5D%3D%5BCl_2%5D%3D0.01436M)
![[COCl_2]=0.015M-0.01436M=0.00064M](https://tex.z-dn.net/?f=%5BCOCl_2%5D%3D0.015M-0.01436M%3D0.00064M)
Regards!
Answer:
The kinetic energy of an object is also measured in joules. Anything that is moving has kinetic energy, but various factors affect how much kinetic energy an object has. The first factor is speed. If two identical objects are moving at different speeds, the faster object has more kinetic energy. In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
Explanation:
Answer:
A. 1, 2, 5
Explanation:
Count the number of Ns in the formula.
- Hope that helped! Please let me know if you need a further explanation.
Static Friction, Sliding Friction, Rolling Friction, and finally Fluid Friction.