Answer:
Explanation:
We know that the formula for acceleration is given by:
, where v = Final velocity
u= Initial velocity
Given : The driver of a car traveling 110 km/h slams on the brakes so that the car undergoes a constant acceleration.
i.e. u= 110 km/h
[∵ 1 km= 100 meters and 1 hour = 3600 seconds]
v= 0 m/s ( At brake , final velocity becomes 0)
t=4.5 seconds
Substitute all the values in the formula , we get

Hence, the average acceleration of the car during braking is
.
Answer: 1
Explanation:
hey i m Lola 16 years old hope this helped you ! :D
The change in velocity (v₂ - v₁) is
<em> (-20) / (the object's mass)</em>.
Call it a crazy hunch, but I can't shake the feeling that there was more
to the question before the part you copied, that mentioned the object's
mass, and its velocity before this force came along.
r(t) models the water flow rate, so the total amount of water that has flowed out of the tank can be calculated by integrating r(t) with respect to time t on the interval t = [0, 35]min
∫r(t)dt, t = [0, 35]
= ∫(300-6t)dt, t = [0, 35]
= 300t-3t², t = [0, 35]
= 300(35) - 3(35)² - 300(0) + 3(0)²
= 6825 liters
Answer:
Both are attractive as well as repulsive.
Explanation:
(Like poles repel, like charges<em> repel</em>; unlike poles attract, unlike charges <em>attract</em>).