1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babymother [125]
2 years ago
5

You sit "at rest" in front of your computer to answer this question. But you sit on the surface of a planet that spins, so even

while you sit "at rest," you are really hurtling through space at high speed. The average radius of the Earth is 6378 km. Ignoring all rotations except the spin of the Earth, what is your linear speed, in kph (kilometers per hour), while you sit in your home?
Physics
1 answer:
igomit [66]2 years ago
4 0

Answer: Linear speed is 1,670 Kph.

Explanation:

If we assume that the earth is a perfect sphere, and that is spinning itself once every roughly 24 hr, we can get the angular velocity of the Earth, in magnitude, as follows:

ω = 2π / 24 Hr

Now, by definition, an angle is the relationship between the arc s, and the radius r, so we can replace these values in the angular velocity expression, as follows:

ω = (Δs / r) . 1/Δt ⇒ ω = (Δs/Δt). 1/r

But, by definition, Δs/At, is just the linear velocity, v, so we can conclude the following;

ω = v/r ⇒ v = ω. r

So, we can get v, as follows:

v = 2π /24 hr . 6378 Km = 1,670 Km/hr.

You might be interested in
Based on the velocity-time graph given, the acceleration of the object is..
fredd [130]
It’s gonna have to b since it’s decreasing
4 0
3 years ago
A gang of robbers is escaping across city roofs at night. They come to the edge of one building and need to drop down to their g
REY [17]

Answer:

a) They will hit the ground with a speed of 19.6 m/s.

b) They are at a height of 20 m.

c) It is not a safe jump.

Explanation:

Hi there!

a) The equations of height and velocity in function of time of a free falling body are the following:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the object at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.8 m/s² considering downward as negative direction).

v = velocity of the object at time t.

Using the equation of velocity, let's find the velocity at which they will hit the ground. The pebble is dropped (initial velocity = 0) and it takes 2 s to reach the ground:

v = v0 + g · t     (v0 = 0)

v = g · t

v = -9.8 m/s² · 2.0 s

v = -19.6 m/s

They will hit the ground with a speed of 19.6 m/s.

b)Now, we have to use the equation of height:

h = h0 + v0 · t + 1/2 · g · t²

If we place the origin of the frame of reference on the ground, we have to find the initial height (h0) knowing that at t = 2.0 s, h = 0 m

0 m = h0 - 1/2 · 9.8 m/s² · (2.0 s)²

h0 = 1/2 · 9.8 m/s² · (2.0 s)²

h0 = 20 m

They are at a height of 20 m.

c)According to a NASA paper (Issues on Human Acceleration Tolerance After Long-Duration Space Flights, figure 10), if you fall with a vertical velocity greater than 17 m/s it is unlikely that you will survive. So, it is not a safe jump.  

3 0
3 years ago
What is the potential difference across a parallel-plate capacitor whose plates are separated by a distance of 4.0 mm where each
suter [353]

The potential difference across the parallel plate capacitor is 2.26 millivolts

<h3>Capacitance of a parallel plate capacitor</h3>

The capacitance of the parallel plate capacitor is given by C = ε₀A/d where

  • ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m,
  • A = area of plates and
  • d = distance between plates = 4.0 mm = 4.0 × 10⁻³ m.

<h3>Charge on plates</h3>

Also, the surface charge on the capacitor Q = σA where

  • σ = charge density = 5.0 pC/m² = 5.0 × 10⁻¹² C/m² and
  • a = area of plates.

<h3>The potential difference across the parallel plate capacitor</h3>

The potential difference across the parallel plate capacitor is V = Q/C

= σA ÷ ε₀A/d

= σd/ε₀

Substituting the values of the variables into the equation, we have

V = σd/ε₀

V = 5.0 × 10⁻¹² C/m² × 4.0 × 10⁻³ m/8.854 × 10⁻¹² F/m

V = 20.0 C/m × 10⁻³/8.854 F/m

V = 2.26 × 10⁻³ Volts

V = 2.26 millivolts

So, the potential difference across the parallel plate capacitor is 2.26 millivolts

Learn more about potential difference across parallel plate capacitor here:

brainly.com/question/12993474

7 0
2 years ago
How can u tell matched forces act on objects?
mamaluj [8]

Answer:If an object's speed changes, or if it changes the direction it's moving in,

then there must be forces acting on it. There is no other way for any of

these things to happen.

Once in a while, there may be a group of forces (two or more) acting on

an object, and the group of forces may turn out to be "balanced".  When

that happens, the object's speed will remain constant, and ... if the speed

is not zero ... it will continue moving in a straight line.  In that case, it's not

possible to tell by looking at it whether there are any forces acting on it

3 0
2 years ago
A standard 1 kilogram weight is a cylinder 54.0 mm in height and 55.0 mm in diameter. what is the density of the material
denis-greek [22]

The radius of the cylinder is equal to half the diameter:

r=\frac{d}{2}=\frac{55.0 mm}{2}=27.5 mm

The volume of the cylinder is given by:

V=\pi r^2 h=\pi (27.5 mm)^2 (54.0 mm)=1.28 \cdot 10^5 mm^3

where h is the heigth of the cylinder. Converting into meters,

V=1.28 \cdot 10^{-4} m^3

And the density of the material will be given by the ratio between the mass and the volume:

d=\frac{m}{V}=\frac{1 kg}{1.28 \cdot 10^{-4} m^3}=7812.5 kg/m^3

5 0
3 years ago
Other questions:
  • What units do physicists use to measure heat energy and electrical energy?
    13·1 answer
  • How can you find the net force if two forces act in opposite directions?
    13·1 answer
  • The value of x in the diagram is ___ °.<br><br> 40<br> 50<br> 90<br> 180
    9·1 answer
  • If you perform 40 J of work lifting a 10-N box from the floor to a shelf, how high is the shelf?
    15·1 answer
  • A flea jumps by exerting a force of 1.09 ✕ 10−5 N straight down on the ground. A breeze blowing on the flea parallel to the grou
    7·1 answer
  • A sinusoidal electromagnetic wave in a vacuum is propagating in the positive z-direction. At a certain point in the wave at a ce
    8·1 answer
  • 8. What is the difference between mechanical waves and<br> electromagnetic waves?
    15·1 answer
  • Why the change of the pressure and temperature affect the velocity of the sound ​
    9·1 answer
  • Now write a short paragraph comparing "fast" to "speeding up quickly" and "slow" to "speeding up slowly".
    5·1 answer
  • If you run North for 5 meters and then East for 15 meters and then
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!