Answer:
Half-wave rectifier converts an AC signal into a DC signal. It's called a half-wave because it only rectify the positive part of an AC signal.
AC Signal = An electrical signal that alternates between positive and negative voltage.
DC Signal = An electrical signal that only has positive voltage.
Rectify = A fancy word for converting something.
Adding a capacitor helps the positive part of the signal stay on longer. This work because the capacitor stores energy kinda like a battery. During the negative part of the AC signal, the energy stored in the capacitor will be drained and used, then the cycle repeats.
The load resistor is just there to prevent a short circuit from happening.
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft
Answer: At time 18.33 seconds it will have moved 500 meters.
Explanation:
Since the acceleration of the car is a linear function of time it can be written as a function of time as


Integrating both sides we get

Now since car starts from rest thus at time t = 0 ; v=0 thus c=0
again integrating with respect to time we get

Now let us assume that car starts from origin thus D=0
thus in the first 15 seconds it covers a distance of

Thus the remaining 125 meters will be covered with a constant speed of

in time equalling 
Thus the total time it requires equals 15+3.33 seconds
t=18.33 seconds
Explanation:
perturbateur ( le temps, le lieu, les personnages[description], la victime, l'enqueteur )
les peripeties
le denouement